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Abstract—The goal is to design a recognition system which can distinguish between two objects with the
same shape but different motion, or between two objects with the same motion but a different shape, The
input to the system is a set of two-dimensional (2D) trajectories from an object tracked through a sequence
of n frames. The structure and three-dimensional (3D} trajectories of each obiect in the domain are stored
in the model. The problem is to match the information in the model with the input set of 2D trajectories
and determine if they represent the same object. The simplest way to perform these steps is to match the
input 2D trajectorjes with the 2D projections of the 3D model trajectories. First, a simple algorithm is
presented which matches two single trajectories using only motion information. The 2D motion trajectories
are converted into two one-dimensional (1D) signals based on their speed and direction components. The
signals are then represented by scale-space images, both to simplify matching and because the scale-space
representations ate translation and roiation invariant. The matching algorithm is extended to include spatial
information and a second algorithm is proposed which matches multiple trajectories by combining motion

and spatial match scores. Both algorithms are tested with real and synthetic data.

Motion analysis ~ Motion representation

1. INTRODUCTION

One of the goals of computer vision is to design object
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of interest. Previous research in object recognition has
relied exclusively or shape information. Shape is a very
important attribute which defines the form and spatial
arrangement of an object, and is invarjant to certain
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ier information about an ouject
exists, however, such as motion, specularity and texture,
which may prove useful in recognition.

Qur research has been directed toward the use of
motion information in object recognition. We believe
that in many cases, where an object has a fixed and
predefined motion, the trajectories of several points on
the object may serve to uniquely identify the object.
Therefore, it should be possible to recognize certain
objects based on motion information obtained from
the trajectories of representative points. We have
developed a method for matching sets of trajectories
which supplements motion information with knowl-
edge about the spatial relationships between certain
points on the object.

The input to our system is a set of two-dimensional
(2D) trajectories from an object tracked through a
sequence of n frames. These trajectories are segmented
by identifying each trajectory with a single object in
the image** The structure and three-dimensional (3D}
trajectories of each object in the domain are stored in
the model. The problem is to match the information
in the model with the input set of 2D trajectories. The

T Author to whom correspondence should be addressed.
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Scale-space Trajectory matching

matching process has two main steps: (1) establish a
one-to-one, onto correspondence between the object
model 3D trajectories and the input set of 2D trajec-
tories, and (2) determine the position of the object in
the model coordinate system such that the input 2D
trajectories closely match the corresponding 2D pro-
jections of the models 3D trajectories. The simplest
way to perform these steps is to match the input 2D
trajectories with the 2D projections of the 31D model
trajectories. In this paper, we propose a multi-scale
approach for matching 21D trajectories. First, we pre-
sent Algorithm A, which matches two single trajectories
using only motion information. We then extend that
algorithm to include spatial information and propose
Algorithm B, which matches multiple trajectoties.

2. RELATED WORK

We will briefly survey recentresearch in motion and
recognition. A great deal of work has been done in the
field of psychology to show that people can recognize
objects from their trajectories. Tt has been theorized
that humans can recognize an object based on the
motion of several points on that object by inferring
the 3D structure of the object from the transform-
ations the 2D image undergoes. Todd™® is interested
In distinguishing between rigid and several types of
non-rigid motion such as bending, stretching, twisting
and flowing. By displaying the trajectories of either
rigid or non-rigid objects, Todd shows that human
observers are able to distinguish between the two.
Cutting™ and Johansson® discuss the relative motion
of individual parts of an object and the common
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motion of the object as a whole. Cutting defines
absolute motion as the path of a particular point on
an object. The absolute motion of a point is -also its
trajectory.

In the computer vision field, several researchers
have reported work related to detection of motion
before recognition. Allmen and Dyer'™ describe a
method for detecting cyclic motion using spatio-
temporal surfaces and curves. They define cyclic motion
to be repeating curvature values along a path of
motion. They argue that the detection and description
of cyclic motion does not depend on prior recognition
of objects or on absclute position information and
must make use of long-range temporal sequences and
be sensitive to multiple scales. They use the curvature
scale-space of the spatiotemporal curve to detect
intervals of repeating curvature values. Koller et al ¢!
use a set of German motion verbs to characterize
vehicle trajectory segments in terms of natural language
concepts.

We have found only a few papers related to the
use of motion in object recognition systems. Murray
et al” have developed a system for recognizing
moving polyhedral objects. They recover 3D structure
from visual motion and use that structure information
to match a CAD-based 3D wireframe model. In re-
covering structure they assume uniform motion, there-
fore, no significant motion cues are employed in the
matching process. Hogg® uses a generate and test
strategy to find a known object in an image. He models
humans with generalized cylinders, predicts the occlud-
ing edges and compares the predicted edge points with
the edge points in the image. A difference picture is
used to identify the approximate position of moving
objects in the first frame of a sequence of images. The

search-space in subsequent frames is reduced through
the use of kinematic constraints.

3. MOTION TRAJECTOQRIES

A trajectory is defined as a sequence of points
((xlsYI)’(XZ:yZ)’(x3vy3),---v(xm Y.J], Ordered ‘Dy an
implicit time dimension. We represent a 2D trajectory
as two one-dimensional (1D) functions: speed and
direction, which are functions of time. The speed
function s; and direction function d; are defined as
follows:

= J((%is1 = P+ iy —y¥)

Yisr ™ N

d; = arctan .
Xi+1 = Xy

Both the speed and direction functions are translation
and rotation invariant. When a trajectory is scaled by
a factor k, the direction function is scale invariant, bt
the speed function is scaled by the same factor k. The
proposed matching algorithm has been designed to
give a good match score between a function and its
scaled version. Motion trajectories are similar to 2D
shape contours but with two notable differences: (1)

two trajectories, which could be considered identical
by shape-matching methods, may prove to be very
different when they are considered as trajectories, and
(2) shape outlines are generally considered to be closed
curves, however, motion trajectories may not always
produce closed curves.

4. MATCHING SINGLE TRAJECTORIES

Algorithm A is intended to match pairs of single
trajectories using a scale-space representation as the
basis for matching. To produce the 2D scale-gpace
image, we convolve the 1D speed and direction
signals with the second derivative of the Gaussian
over a range of ¢ values. We then locate the speed
and direction zero-crossings by scanning the scale-

Enﬂ(‘P tmnas-q nhd fpchnc H-\p \rnlum \n. a ng}g‘nbo:g

hood around each point. If we let to be the point that
we are testing, then ¢, + At and t, — At will be points
at a distance At on either side of 1. We will let
fl(to+ At) and f(t,— A7) be the functions at those

pnﬂﬂc Whﬁn we convelve those functions w“h the

second derivative of the Gaussian, if the results have
opposite signs, then a zero-crossing occurs at i,
Therefore, if f“(to + Af)sexp[ —(ty + ALY /276*] >0
and f"(to — Atyxexp [—(to — AD?*/276%*] < 0 or vice

P ot A
versa, then a zero-crossing exists at 2,. The strength and

polanty of each zero-crossing is referred to as the zero-
crossing potential. The strength and polarity of the
zero-crossing are defined, respectively, as the magni-
tude and sign of the function f (to) convolved with the

first derivative of the Gaussian, f'{to)+exp{—t&/2na?).

Ttiswell known that thezero-crossings of a distorted
signal are delocalized and as a result, the zero-crossing
potentials from a distorted signal are not the same as
those from an wndistoried signal. However a smoothed
ZEIo-Cr uauiﬂg pOwuua} islesss acualu vet1o llUlab and our
algorithm matches two trajectories by computing
the difference between their smoothed zero-crossing
potentials.

Assume that the velocity and speed changes can be
modeled as step functions. Let u{) be a step function
and let s u(t — ¢,) be a step function of size s,, which
occurs at time z,. When we convolve s,u(t —t,) with
the first derivative of the Gaussian, we get

d —~12Y\
S’uu_m‘_cw\zm )

This is equal to

=4

2na?/

which gives us s,exp[ —(t —1,)%/2ne?]. Its value at
t =1, can be approximated by s,8(r — ¢,), where 8(r) is
an impulse function, Applying the diffusion step by
convolving s,5(t —t,) with the Gaussian we obtain
sy expl—(t —1,)°/2n¢?). The mismatch &, between a
step of size 5, at 1, and a step of size s, at ¢, is computed
by integrating the absolute difference of diffused po-
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Fig. 1. (a) Two steps of the same size at different locations, 1, and 1, {b) detected zero-crossings of strength
5, and s,; (c) the diffused zero-crossings (their difference is shown by the shaded area and is denoted by &)
{d) £ in a graph form; (¢) £ in a table form.

tentials over the whole image:

= T T fese] T

—(t~1,)?
—S2expf — =

This mismatch captures the differences in strength,
polarity and location of the zero-crossings.

For the case when s, =s; =1, equation {1) was
solved symbolically; the results are shown in graph
form in Fig. 1(d) and in table form in Fig. {(e). It is
clear that for a fixed ¢ the mismatch & decreases

drdo. (1)

with the decrease in the distance between the two
zero-crossings. When o gets large enough, the distance
between the two zero-crossings becomes insignificant,
and the response becomes 0.

The effect of diffusing the zero-crossing potential in
two dimensions is shown in Figs 2 and 3. The two
scale-space images 1o be compared are shown in parts
{a) and (b) of these figures, while parts (¢} and (d) show
the zero-crossing potentials scaled between 0 and 100.
In order to make a comparison of these contours, the
same scaling function was used for (a) and (b). The
diffused versions of the zero-crossing potentials are
shown in (¢} and {d), and the diffgrence picture beiween
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(c) and (d) is shown in fe). The scale-space images in
Fig. 2 correspond to the speed functions of trajectories
Al and BI (a rotated version of Al). Since the speed
function is rotation invariant, Al and B1 match well,
and as a result the difference picture in Fig. 2(e) is dark.
Figure 3 shows two scale-space images that correspond
to the speed functions of trajectories Al and B3 (which
is distinct from Al). Since these scale-spaces are
different, their diffused zero-crossing potentials also
differ and the difference picture in Fig. 3(e) shows more
bright portions. '
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Algorithm A, {or matching single trajectories, is
given in Fig. 4. The model base contains the diffused
zero-crossing potentials of the speed («,) and direction
(xg) functions. The input is a trajectory which will be
compared with the information in the model. A match
score is produced which indicates how closely the two
trajectories malch.

The first step in the algorithm is to decompose the
trajectory into two 1D signals: speed and direction.
The second step constructs the scale-space images of
the speed and direction signals by convolving each
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Fig. 3. (a) The zero-crossing potential of the speed scale-space of trajectory Al (shown in Fig. 8(a)); (b) the
2zero-crossing potential of the speed scale-space of trajectory B3, which is distinct from trajectory Al;
{c) diffused version of (a); (d) diffused version of (b); (¢) difference picture between {c) and (d).

signal with the second derivative of the Gaussian over
a range of ¢ values. This produces two 2D arrays,
which we call 8, and §,, where one dimension is the
frame number and the other dimension is the ¢ value
used in the Gaussian mask. In our implementation, we
used ¢ values from 1 to 10 in steps of 0.1. The arrays
are the same size as the original image and each
location in the array holds the zera-crossing potential
of the corresponding location in the image. In the
third step of the algorithm, the zero-crossing potentials
in §, and B, are diffused and the results stored in

arrays v, and 7,. The diffusion is achieved by distribut-
ing the zero-crossing potential at each point into
a small neighborhood using a 2D Gaussian mask
with ¢ = 1. The fourth step is performed to take care
of scaling, and is based on the fact that the zero-
crossing potential is proportional to the step size. The
terms, (33 2[n,61)/(3 2 7. 0]) and XY xa[n, a3V
(33 y4[n,o]), are used as the scaling factors for speed
and direction. The entries of ¥, and y, are multiplied
by the scaling factors and the results are stored back
in those arrays. Step five finds the difference between
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TRAJECTORY MATCHING ALGORITHM

Model for maiching: The model trajectory speed signal «, and direction signal «, are stored as diffused
zero-crossing potentials in arrays «,[n, ¢] and «s[n, 6], respectively.

Input. A trajeciory from the input image sequence.

L
2,

Compare the speed and direction signals from the input trajectory.

Cienerate the speed and direction scale-space images by convolving the speed and direction signals
with the second derivative of the Gaussian over a range of ¢ values. This produces two 2D arrays,
B.[n,0] and B,In,¢], conaining the zero-crossing potentials at each point. In these arrays, points
which are not zero-crossings will hold a zero value.

. Diffuse the zero-crossing potentials £, and §, using a 2D Gaussian mask with o =1, and store the

result in y, and y,.

. Scale the values in y, and y,, respectively, by the scaling factors (3% o,[n, o AT Y 7,07, 0]) and

(.3 ay[n. a3 Y valn o1}

. Perform an element by element subtraction of the « and y arrays and store the absolute value in a

pair of arrays, €, for speed and ¢, for direction.

. Compute the match scores for speed and direction as t —(3'¥ [e,(n, o))(2%|Y Y e ln, a})) and

1 — (Y lealn, V2 #1TT ayln, o)), respectively.

. Average the speed and direction match scores to generate the overall match score.

A perfect match between trajectories will produce a match score of 1.

Fig. 4. Algorithm A.

the input zero-crossing potentials in v, and ¥4 and the
model zero-crossing potentials in ¢, and «;. Two new
arrays, €; and €, are produced by a simple element-by-
element subtraction of the « and y arrays. Step six
computes the speed match score and the direction
match score. The match function is based on the obser-
vation that the maximum possible value of 3 3 {e(n, )|
is 2xY ¥ |«(#, 6)], and the maximum possible value of
S ¥ lealn, @) is 2«3y |ay(n, o)l Finally, in step seven,
the overall match score is computed from the average
of the speed and direction scores.

5. MATCHING MULTIPLE TRASECTORIES

In the previous section we proposed a method for
matching pairs of single trajectories that used only
motion information. A single motion trajectory does
not carry any information about the shapet of the
moving object. When a number of points belonging to
a single object are tracked, the trajectories of those
points define the motion of the object as well as its
shape.

In this section we propose a scheme for matching
sets of trajectories that uses both motion and spatial
information and can be employed in developing an
object recognition systesn. The method discussed in
the previous section will be used to match single
trajectories using motion information only. Since our
model does not contain information about the shape
outline of the object, we will use the Euclidean distances

T By shape, we mean the relative spatial orientation of two
or more points. The points may or may not have physical
edges between them.

between selected peints in the object’s trajectories for
our spatial information and include that data in the
model. ¥n our current implementation, we manually
select those points that will provide the best spatial
representation for matching purposes. We have left the
design of an automatic system for determining these
potints to a future project.

We compare the spatial information in the model
with the Euclidean distances between corresponding
points in the trajectories that we are matching. If four
points in a trajectory are tracked, we will store

()

Euclidean distances in the model for each frame in the
sequence. Figure 5 shows an object with four selected
points Py, P,, P, and P,. The Euclidean distances
between those points{a, b, ¢, d, e and f }are stored in the
model. If the points on an object are rigid with tespect
to each other in all frames, the Euclidean distance

Fig. 5. An object with four points P,, P, P, and P,. The
Euclidean distances a,b,¢,d,e and f will be stored in the
model.
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TRAJECTORY SET MATCHING ALGORITHM

Input: Trajectory sets §, and S;. Let {S],5%.5,....57} be the component trajectories of §, and let
{8.53,53...., 81} be the component trajectories of S,.

Assumptions:

1. 8, and S, both have n component trajectories.

2. M:8, = §,, a one-to-one, onto function that maps a trajectory from set 8, to S, is known.

3. The weights, W(S%) for motion match and W(S}, $1) for spatial match, are stored in the mod

Algorithm:

a1
GEL

1. Using Algorithm A, compute the motion match score &(51, S¥SV) between trdjectories §i and $¥6H,

nzizl

2. Compute the spatial match score €({S, S}, (S5, gty by using spatial information to match
each paijr of trajectorjes {S5.5{} and {ghesh) S¥SM Y n>iz1,n Zjzlandi#j.
3. Compute the overall match score {5y, 5,) of trajectory sets $,and §,.

i=n i=n f=n

{(8:.5:)= ¥ W(sh)e(st, syishy 4
i=1

T WS SDe({S), 81}, {Skrew, seshy),
i

i=1 j=10%

Fig. 6. Algorithm B.

between the points will be the same and we need only
consider the distances in one frame, However, if the
points are non-rigid, we will have to determine the
distances in all frames. Let E(X,Y) be the average
Euclidean distance between corresponding points in
the two trajectories X and Y. We define ¢ below as the
normalized difference between these average Euclidean
distances and consider it to be a measure of the spatial
match between the trajectory pairs {T1,T2} and
{T3, T4).

Let §, and S, be sets of » trajectories and let
{51,81,53,.... 81} be the component trajectories of
§; and {53,8%,53,...,53} be the component trajector-
tes of S,. Assume that we know M 15, —+S,, a one-to-
one, onto function that maps a trajectory from set S,
to §,. We define (S%,5¥Y) as the motion match
score between trajectories §} and SY60 and g {si.si}, : l
{syey, SYD}) as the spatial match score, |
We will store constant values in the model to |
represent weight factors to be applied to the motion

e({T1,7T2},{T3,T4}) and spatial match terms. These weights will allow
_ - adjusting the proportions of the motion and spatial
=1—min ( 1, =13, T4 - E(T1, T ) match scores that are included in the overall score. We
E(T1,T2) define W(S}) as the set of weights for the motion match
Al B1
Al | (1.00,1.00,1.00) {0.77,0.58,0.68) {0.40,0.38,0.39) (0.07,0.42,0.25) (0.99,1.00,1.00)
Bl (1.00,1.00,1.00) | (0-36,0.37,0.37) | (0.05,0.43,0.24) (0.76, 0.58, 0.67)
B2 (1.00,1.00,1.00) [{0.38,0.23,0.31) | (0.38,0.22,0.3)
B3

(1.00,1.00,1.60 | (0.06, 0.42, 0.24)

(2)

;
Trajectory | Ordered Match :

Al Al, B4, BI, B2, B3

B1 B1, A1, B4, B2, B3

B2 B2, Al, B1, B3, B4

}
B3 B3, B2, Al, B4, B1 l
(b) |

Fig. 7. (a) Match scores of comparing trajectoties Al, Bi (a rotated version of A1), B2 (a noisy version of
Al), B3 (a distinct trajectory from A1), and B4 (a magnified version of Al by z factor of 2). Each entry is a

triple (a, b, ¢), “a” the mateh score of speed scale-spaces, “b” the match score of direction scale-spaces, and ;
“¢” the overall match score ((a + b)/2); (b} the matches for a given ¢

PR 26:4-F

Vel trajectory ordered on the match score,
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Fig. 8. (a) Trajectory Al; (b) trajectory Bl (a rotated version of Al}; {c) speed signal of trajectory Al;

{d) speed signal of trajectory B1; (e} scale-space of speed signal of trajectory A l;{f) scale-space of speed signal

of trajectory Bl; {g} direction signal of trajectory Al; (h) direction signal of trajectory B; {i) scale-space of
direction signal of trajectory Al (j) scale-space of direction signal of trajectory B1.
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terms and W(S}, 5§{) as the set of weights for the spatial
match terms.

The overall match score &(S,, S,) between trajectory
sets, Sy and §,, will be computed as

US1,Sah= T WSLIES, SY0)

=1
i=nj=n
+ Z W(s, 89)
i=1.j=1,i#j

x §({S}, 81}, {S¥6, syshy),

Figure 6 shows Algorithm B for matching multiple
trajectories,

6. RESULTS

In this section we present the results of applying
both Algorithm A and Algorithm B on synthetic and
real sequences. We show that both algorithms per-
formed quite well on these test sequences.

6.1. Algorithm A

Figure 7(a) shows the results of comparing trajector-
ies Al, B, B2, B3 and B4. Bl is a rotated version of
Al, B2 is a noisy and rotated version of Al, B3isa
trajectory distinct from Af, and Bd is a version of Al
magnified by a factor of two. Each entry is a triple
(a,b,c), where “a” is the match score of speed scale-
spaces, “b” is the match score of direction scale-spaces,
and “¢” is the overall match score given by (a + b)/2.
If the 1wo scale-spaces are identical, the algorithm
gives a perfect match score of 1, Figure 7(b) shows the
match scores ordered from best to worst. Figure &(a)
shows trajectory Al and Fig, 8(b) shows trajectory Bi
(a rotated version of Al). Figures 8(c)~{f) show the
speed signals of trajectories Al and Bl and their
respective scale-space images. The direction signals of
trajectories A1 and Bl and their scale-space images are
shown in Figs 8(g)~(j} Since B1 differs from Al only
in otientation, its speed and direction signals should
be identical to those of Al. There are slight differences
in the signals caused by truncation errors since the
signals are scaled by a constant factor of ten upon

input to the program. The truncation error in angle
computation is greater, therefore the errors between
the direction signals of Bl and A1 are much more than
the errors between their respective speed signals.
Conscquently, the scale-space images of speed (shown
in Figs 8{¢) and (f)) resemble each other more closely
than the scale spaces of direction (shown in Figs 8(i)
and (j)). The match score of speed signals was 0.77 and
the match score of direction signals was 0.58.

It is clear from Fig. 7 that the rotated (B1) and
magnified (B4) versions of Al both produced good
match scores. As expected, the distinct trajectory (B3)
generated a low match score while the rotated and
noisy version (B2) did not match as well as either Bl
or B4, but much better than B3,

To produce real data to test our algorithms, we used
a video camera to record scenes of people walking. We
videotaped a person, X, walking at two different times,
and generated two distinct image sequences. We also
videotaped a person, W, and generated a single image
sequence. From each image sequence, we produced a
set of trajectories by manually tracking nine body
points. Figure 9 shows the points tracked and our
labels for them.

Figure 13 shows the inatch scores between sequences
K' and K? and Fig. 14 shows the scores between
sequences K' and W', We used sequence K! as the
model, therefore the rows of each table show the results
of comparing selected body points from sequence K1
with corresponding body points from sequences K2
and W'. The lknee and rknee, lheel and rheel, and ltoe
and rtoe produced similar results, so we included only
one of each in this report. As expected, body points
from sequence K’ produced better match scores to the
corresponding body peints in sequence K2 than to
dissimilar body points from either sequence. As the
graphs in Figs 10-12 indicate, the head, elbow and knee
have relatively flat trajectories and, as expected, pro-
duce higher match scores to-each other than to more
active body points such as hand, heel and toe.

6.2. Algorithm B

To test the algorithm for matching multiple traject-

1 1 N PR PR axr
ories, the walking sequences of persohs K and W

Body Part | sequence K | sequence K? | sequence W?
top of head K l:ead Klgeod W:ead
right elbow Ko K2, . W}, ..
right hand KI!cnd 'Kffand ngand
l‘ight knee K-rlknee kanee erimee
flght heel K;lhecf K:?heel W:{xecl
righi toe Ki.. K% w: .
left knee K llknee Kf%cncc Wl}mge
left heel Ki'lhee! thcci H/lf'aeef
le{t‘ toe Kll!oe Kﬁoe “/l:oe

Fig. 9. Body points tracked in sequences K', K? and W',
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Fig. 10. Image sequence K' in which person K is walking. There are 30 frames in this sequen . (a), (b} First
and last frames of the sequence K'; (¢) trajectory of Ki...: (d) trajectory of KL, ( {e) trajectory of Kluon:

{f) trajectory of Ki,..; (g) trajectory of K}, .; (h} trajectory of K.}
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(g) (h)
Fig. 11. Tmage sequence K. in which person K is walking. There are 30 frames in this sequence. (a), (b) First ’
and last frames of the sequence K2; (c) trajectory of K2, _,; (d) trajectory of Ki..4: (e) trajectory of KZ,,,.; i
(f) trajectory of Kj,..: (g} trajectory of K3,..; (h) trajectory of K. .
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Fig. 12. Image sequence W! in which person W is walking. There are 30 frames in this sequence. (a), {b) First
and fast frames of the sequence W; {¢) trajectory of W, (d) trajectory of W), _; (e} trajectory of Wi,
(f) trajectory of W} ; {2) trajectory of WL _ (h) trajectory of W}
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thnd Eﬂnd’ Kflbm.u Kf.zknrr Kf-hool Kg:oe
KI (0.60,0.73,0.67) | (0.28,0.13,0.21) | (0.35,0.23,0.29) | (0.32,0.15,0.24} 0.16,0.15,0.16) | (0.13,0.27,0.20
T | (0.32,0.16,0.24) | {0.91,091,0.91) | (0.23,0.47.0-35) | (0.25,0.39,0.33) | (0.16,0.03,0.07) | (0.16,0.08,0.13)
K1, | .0.350.24,0.30) | {0.20,0.51,0.36) | {0.72,0.70,0.70) | (0.51,0.45,0.48) | (0.13,0.67,0.10) | {0.10,0.09,0.10)
K. | (03301562711 {0.260.33,0.33 0.42,0.41,042) | (0.80,0.86,0.83) | {0.14,0.04,009) | {0.09,0.15,0.12)
Kl . [ (015,0.19,0.17) | {0.11,0.05,0.08) | (0.11,0.08,0.10) | (0.16,0.04,0.10) { (0.91,0.89,0.90) | (0.58,0.50,0.54)
K1, | (0.10,0.26,0.18) | (0.17,0.04,0.11) | (0.08,0.21,0.15) | (0.11,0.16,0.14) | (0.56,0.41,049) | {0.73,0.82,0.78)
Fig. 13. Table showing the match scores produced by comparing trajectories from sequence K' with
trajectories from sequence K2, As expected, there is generally 2 higher match score between the same body
points. i.e. Ki..; has a better match with K2, than with K2,,. Note that since similar body parts (KL,..
and K},..) produced similar scores, we omitted them from this table.
W!:.aa.d. Itnnd Wflfb{)w H/lknee W;‘hpp! "._l.“
KT . 1 {0.48,0.24,0.36} | (0.45,0.31,6.38) | {0.15,0.17,0.18) | {0.23,0.25,0.24) | {0.16,0.14,6.15) | (0.17,0.37,0.27)
Ky o 0.32,0.16,0.24) | (0.28,0.20,0.24) 0.20,0.15,0.18) | {0.18,0.19,0.18 0.20,0.04,0.12 (0.18,0.16,0.17}
Kl T0280.16,0.22) | (0.27,0.37,032) | (0.17,019,0.18) | (0.25,0.24,025) | {0.17,0.07,0.12) | (0.12,0.11,0.12
KL . ] (0.43,0.15,0.29) | (0.40,0.42,0.41) | (0.33,0.25,0.29) | (0.13,0.29,0.21 0.25,0.07,0.17) | (0.11,0.16,0.14
KI | (0.20,6.13,0.17) | {0.27,0.05,6.16) | (0.11,0.06,0.09) | (0.12,0.06,0.09) | {0.48,0.48,0.48) | (0.41,0.31,0.36
Kl .. | (0.11,0.28,0.20) | (0.17,0.06,0.12) | (0.08,0.17,0.13) | (0.12,0.18,0.15) | (0.30,0.48,0.39) | (0.46,0.50,0.48)

Fig. 14. Table showing the match scores produced by comparing trajectories from sequence K! with the
trajectories from sequence W', Although some scores indicate similar trajectories by similar body points
on different people, for example K}, and W], the match scores are much lower than between the same
body points in the sequences K! and K2 which are from the same person.

(b)

shown in Figs 10-12 were used. We tracked the
{rajeciories of nine distincet body poinis {see Fig. 9
from each sequence. Some body points, such as hand,
heel and toe are rich in motion information and are
useful in producing a unique model of the motion of
an individual. The trajectories of other points, such

ac hond olhovw and bneps arse ralativaly flat and tace
as feqs, €¢aow and Rnee, are raaivlly nal and iss

important to matching motion, but provide useful
spatial information. We include the head trajectory in
our model since it is the most valuable in terms of
spatial ifformation. However, due to the limited range
of motion that the head exhibits, the match scores are

motiod 1Natl 1ng nedaqa AUILE, 126 AIIALLIL SCLICs 4

low, even between sequences from the same person.
We assume the trajectory set {Kjos Kings Khea t0
be the model. Our goal is to compare this set with
another set from the same person (K?), and with a set
from a different person (W!'). Figure 16 shows the
spatial configuration of the nine body points that are
tracked in each frame of the sequences. The points are
connected by lines to generate stick figures that model
the human form. The shoulder and hip points in each
figure were approximated and are included to produce
a more natural looking figure. The spatial relationship
of the body points can be seen in these drawings as
well as the relative motion of those points. As this time,
we weight the match score terms equally. We did not
address the issue of adjusting the relative proportion
of motion and spatial scores in the overall score, but
intend to pursue this area in the future.

Fig. 15. Images with stick figure drawing superimposed to
indicate spatial relationship between body points: (a) image
from sequence K'; (b) image from sequence W?. Note: hip
and shoulder points approximated and added for clarity, also
note that the heel points were taken from the upper heel of
the shoe to improve the accuracy of tracking those points,

i
i
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(c)

g the nine body points track
- Note: hip and shoulder point

Fig. 16. Stick figure drawings showin

ed for all 30 frames in: (2) sequence K1;
(b) sequence K2 () sequence W1

$ approximated and added for clarity.

Motion Match Score

(Kfead)
(K}{ccd) 0'67

2
Khu.nd ' Krlzeel
1 1
Kkund 0.91 L K?:‘Aé::' .90

Spatial Match Score

’ (Kfead’ K}?and) (K!?md’ Krzheel)
(Klzcadﬁ K-‘iand) 0.99 (Kheach Krhec{)

0.99
(Kf?nndi K:?heel)
(Kﬁanda K:heel) 099

(0-67 +0.91 + 0.90 + 0.99 + 0.99 + 0.99) /6 =091

Fig. 17. Match score of trajectory sets {K 1, K1 .. Kheatand {KZ .. Kz,
equal weight by simple averaging,

C(KY, ic?) =

nds Klieer}- The six terms are given
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Motion Match Score

1
(thad)
g ) N2
U ead) L 13
1 1
Whand rheel
1 1
Ki .z 024 Klpee | 0.48

Spatial Match Score

(M,h‘ead? whland)

(Whead’ thce!)

(K}tead’ K}zan&) 0.88

(Kllaemb K‘:hegl) 0-95

(WI:cndi W:fleel)

( Kliand’ K:hee!)

0.95

(KN, W) = (0.36 + 0.24 + 0.48 + 0.88 + 0.95 + 0.95) / 6 = 0.64

Fig. 18. Maich scores of trajectary sets {K} ... Kb Kl oord and (W], WL .. W1_}. The six terms are
given equal weight by simple averaging.

Algorithm B produced a match score of 0.9] for
trajectory set {Kj..., Kine, Kheet} and trajectory set
{KZes» KZng» Ki.rt} of the same person, and a match
score of 0.64 for trajectory sets {K}_.;, Kionar Klhear)
and {W,, .., W}, Wh_..} corresponding to two differ-
ent persons. In both cases the mapping from one set
of trajectories to the other was assumed to be known.
The match scores are tabulated in Figs 17 and 18 and
show that K1 matches K2 significantly better than it

does W1,

7. CONCLUSIONS

In this paper, we presented a method for matching
motion trajectories that can be used to incorporate the
direct use of motion in an object recognition system.
We utilize motion informatien from extended trajec-
tories generated by points on 2 moving object. A
stmple and efficient algorithm for trajectory matching
was described which uses a scaIe-space representation
of trajectory speed and direction. The algorithm was
then extended to include spatial information from
points on the object to assist in matching multiple
trajectories. We demonstrated the performance of

both algorithms on real and synthetic cases.
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