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Abstract

Conventional tracking approaches assume proximity in
space, time and appearance of objects in successive obser-
vations. However, observations of objects are often widely
separated in time and space when viewed from multiple
non-overlapping cameras. To address this problem, we
present a novel approach for establishing object correspon-
dence across non-overlapping cameras. Our multi-camera
tracking algorithm exploits the redundance in paths that
people and cars tend to follow, e.g. roads, walk-ways or
corridors, by using motion trends and appearance of ob-
jects, to establish correspondence. Our system does not
require any inter-camera calibration, instead the system
learns the camera topology and path probabilities of ob-
jects using Parzen windows, during a training phase. Once
the training is complete, correspondences are assigned us-
ing the maximum a posteriori (MAP) estimation framework.
The learned parameters are updated with changing trajec-
tory patterns. Experiments with real world videos are re-
ported, which validate the proposed approach.

1. Introduction

Surveillance of wide areas requires a network of cameras. It
is not always possible to have overlapping camera views in
this case. The observations of the same object can be widely
separated in time and space in such a scenario. Moreover, it
is preferable that the tracking system does not require cam-
era calibration or complete site modelling, since the lux-
ury of calibrated cameras or site models is not available in
most situations. In this paper, we focus on the problem of
multi-camera tracking in a system of non-overlapping un-
calibrated cameras. The task of a multi-camera tracker is to
establish correspondence between observations of objects
across cameras. We assume that tracking information is
available for individual cameras, and the objective is to �nd
correspondences between these tracks, in different cameras,
such that the corresponded tracks belong to the same object
in the real world.

We use the observations of people through the system
of cameras to discover the relationships between the cam-
eras. For example, suppose two camerasA andB are suc-

cessively arranged alongside a walkway. Suppose people
moving along one direction of the walkway that are initially
observed in cameraA are also observed entering cameraB
after a certain time interval. However, people moving in op-
posite direction in cameraA might not later be observed in
cameraB . Thus, the usual locations of exits and entrances
between cameras, direction of movement and the average
time taken to reach fromA to B can be used to constrain
correspondences. In this paper, we refer to these cues as
space-timecues. Another cue for tracking is the appearance
of persons as they move through cameras. We present a
MAP estimation framework to use these cues in a principled
manner for tracking. We use Parzen windows, also known
as kernel density estimators, to estimate the inter-camera
space-time probabilities from the training data, i.e., proba-
bility of an object entering a certain camera at a certain time
given the location, time and velocity of its exit from other
cameras. Using Parzen windows lets the data `speak for it-
self' ([13]) rather than imposing assumptions. The change
in appearance as a person moves between certain cameras
is modelled using the distances between color models. The
correspondence probability, i.e. the probability that two
observations are of the same object, depends on both the
space-time information and the appearance. Tracks are as-
signed by estimating the correspondences, which maximize
the posterior probabilities. This is achieved by transforming
the MAP estimation problem into a problem of �nding the
path cover of a directed graph for which an ef�cient optimal
solution exists.

The paper is organized as follows: We give an overview
of the related research in Section 2. A Bayesian formula-
tion of the problem is presented in Section 3. The learning
of path and appearance probabilities is discussed in Section
4. A method to �nd correspondences that maximizes the
a posteriori probabilities is given in Section 5. The proce-
dure to update the probabilistic models is given in Section
6. Results are presented in Section 7.

2. Related Work

A large amount of work on multi-camera surveillance as-
sumes overlapping views. Jain and Wakimoto [9] used cal-
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ibrated cameras and an environmental model to obtain 3D
location of a person. Cai and Aggarwal [1], used multi-
ple calibrated cameras for surveillance. Geometric and in-
tensity features were used to track the objects in multiple
views. Collins et al. [3] developed a system consisting of
multiple calibrated cameras and a site model. They used re-
gion correlation and location on the 3D site model for track-
ing. Bayesian Networks were used by (Chang and Gong)
[2] and (Dockstader and Tekalp)[5] for tracking and oc-
clusion reasoning across cameras with overlapping views.
Lee et al. [14] proposed an approach for tracking in cam-
eras with overlapping FOV's that does not require calibra-
tion. The camera calibration information was recovered by
matching motion trajectories obtained from different views
and plane homographies were computed from the most fre-
quent matches. Khan et al. [12] used �eld of view (FOV)
line constraints for tracking in cameras with overlapping
views. Javed et al. [10] extended this approach for track-
ing in non-overlapping cameras.

Our work is inspired by the approaches of Huang and
Russel [8], and Kettnaker and Zabih [11] for tracking in
non-overlapping cameras. Huang and Russel presented a
probabilistic approach for object identi�cation across two
cameras. Their task was to correspond vehicles across cam-
eras on a highway. The appearance of vehicles was mod-
elled by the mean of the color. Transition times were mod-
elled as Gaussian distributions and it was assumed that
the initial transition probabilities were known. Our work
is different from the above mentioned approach in that,
Huang and Russel presented an application speci�c solu-
tion, i.e., tracking vehicles across two calibrated cameras,
where vehicles are moving only in one direction and only
on speci�ed lanes. We present a general solution, which
allows movement in all direction for arbitrary number of
un-calibrated cameras. We do not assume that the transi-
tion probabilities are known. In addition, their online cor-
respondence algorithm trades off matching con�dence with
solution space coverage, which forces them to commit early
and possibly make an erroneous correspondence. Moreover,
they modelled appearance by just the mean color value of
the whole object, which is not enough to distinguish be-
tween multi-colored objects like people.

Kettnaker and Zabih [11] used a Bayesian formulation of
the problem to reconstruct the paths of objects across mul-
tiple cameras. The problem was transformed into a linear
program to establish correspondence. They requiredman-
ual input of the topology of allowable paths of movement
and the transition probabilities. It was also assumed that
the paths and transition probabilities were constant. Thus
their approach would not be able to cope with any change
in the assumed paths of people. We automatically learn the
relationship between cameras together with the most likely
path probabilities and transition time intervals. Moreover,

we update the probabilities online to keep up with changing
traf�c patterns. In their formulation, they used assumptions
different from ours, which lead to different correspondence
probabilities. Furthermore, they did not jointly model the
positions, velocities and transition times of objects across
cameras. We do not assume independence between these
correlated features.

3 Formulation

Suppose that we have a system ofk Cameras
C1; C2; : : : ; Ck with non-overlapping views. Further,
assume that there aren objects p1; p2; : : : ; pn in the
environment, such that each objectpi generates a sequence
of tracks Ti = Ti;t 1 ; Ti;t 2 ; : : : ; Ti;t m in the system of
cameras at successive time instancesf tm g. Assuming that
the task of single camera tracking is already solved, let
Oj =

©
Oj; 1; Oj; 2; : : : ; Oj;m j

ª
be the set of observations

(tracks) that were observed by the cameraCj . We assume
each observationOj;a to be based on two features, ap-
pearance of the objectOj;a (app) and space-time features
of the objectOj;a (st) (location, velocity, time etc.). It is
reasonable to assume that bothOj;a (app) andOj;a (st) are
independent of each other, i.e., the appearance of an object
doesn't depend on its space-time cues in the image. Let
a correspondencekc;d

a;b to be an ordered pair(Oa;b ; Oc;d ),
which de�nes the hypothesis that the observationsOa;b

andOc;d correspond to the consecutive tracks of the same
object in the environment. The problem of Multi-camera

tracking is to �nd a set of correspondencesK =
n

kc;d
a;b

o

such that

² For all kc;d
a;b ; kr;s

p;q 2 K , kc;d
a;b 6= kr;s

p;q ) (a; b) 6=
(p; q) ^ (c; d) 6= ( r; s), i.e. each observation of an
object is preceded or succeeded by a maximum of one
observation.

² kc;d
a;b 2 K if and only if Oa;b andOc;d correspond to

the consecutive tracks of the same object in the envi-
ronment.

Now, let K =
n

k j;b
i;a

o
be a hypothesized solution of the

above problem. Assuming that each correspondence, i.e. a
matching between two observations, is independent of other
observations and correspondences, we have,

P (K jO) =
Y

k j;b
i;a 2 K

Pi;j

³
k j;b

i;a jOi;a ; Oj;b

´
; (1)

wherePi;j

³
k j;b

i;a jOi;a ; Oj;b

´
is the conditional probability

of the correspondencek j;b
i;a , given the observationsOi;a and
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Oj;b for two camerasCi andCj in the system. From Bayes
Theorem, we have,

Pi;j

¡
k j;b

i;a jOi;a ; Oj;b

¢
=

Pi;j

¡
Oi;a ; Oj;b jk j;b

i;a

¢
Pi;j

¡
k j;b

i;a

¢

Pi;j (Oi;a ; Oj;b )
: (2)

Using the above equation along with the independence
of observationsOj;a (app) and Oj;a (st) (for all a and j ),
we have,

P (K jO) =
Y

k j;b
i;a 2 K

((
1

Pi;j (Oi;a ; Oj;b )
)

Pi;j

³
Oi;a (app); Oj;b (app)jk j;b

i;a

´
(3)

Pi;j

³
Oi;a (st); Oj;b (st)jk j;b

i;a

´
Pi;j

³
k j;b

i;a

´
):

The solution of the multi-camera tracking problem is the
hypothesisK 0 in the hypothesis space§ that maximizes the
above term (posterior) and is given by

K 0 = arg max
K 2 §

P (K jO) :

We de�ne the prior Pi;j

³
k j;b

i;a

´
to be the probability

P (Ci ; Cj ) of a transition from cameraCi to Cj . More-
over, we assume that the observation pairs are uniformly
distributed and hence,Pi;j (Oi;a ; Oj;b ) is a constant scale
factor. Thus the problem is reduced to the solution of fol-
lowing term:

K 0 = arg max
K 2 §

X

k j;b
i;a 2 K

log(Pi;j

¡
Oi;a (app); Oj;b (app)jk j;b

i;a

¢

Pi;j

¡
Oi;a (st); Oj;b (st)jk j;b

i;a

¢
P (Ci ; Cj )) : (4)

In order to maximize the posterior, we need to �nd the
space-time and appearance probability density functions.
This issue is discussed in the next section.

4 Learning Inter-Camera Space-Time and
Appearance Probabilities

Learning is carried out by assuming that the correspon-
dences are known. One way to achieve this is by making
a single person roam in the environment. However, it is
not always possible to have a single person in the environ-
ment. In this case, only appearance matching can be used
for establishing correspondence, since path information is
unknown. Note that, during training, it is not necessary
to correspond all persons across cameras. Only the best
matches (those closest in appearance) can be used for learn-
ing.

4.1 Estimating inter-camera space-time
probabilities using Parzen windows

The Parzen window technique is used to estimate the space-
time pdfs between each pair of cameras. Suppose we have
a sampleS consisting ofn, d dimensional, data points
x1; x2; : : : ; xn from a multi-variate distributionp(x) , then
an estimatêp(x) of the density atx can be calculated using

p̂(x) =
1
n

jH j¡
1
2

nX

i =1

K (H ¡ 1
2 (x ¡ x i )) ; (5)

where thed variate kernelK (x) is a bounded function sat-
isfying

R
K (x)dx = 1 , andH is a symmetricd £ d band-

width matrix. The multivariate kernelK (x) can be gener-
ated from the product of symmetric univariate kernelK u ,
i.e.

K (x) =
dY

j =1

K u (x f j g): (6)

The feature vectorx, used for learning the space-time pdfs
from cameraCi to Cj , i.e., Pi;j (Oi;a (st); Oj;b (st)jk j;b

i;a ),
is a seven dimensional vector, consisting of the exit loca-
tion from Ci , entry locations inCj , exit velocities, and
the time taken between exit and entry. We use a univari-
ate Gaussian kernel to generateK (x). Moreover, to reduce
the complexity,H is assumed to be a diagonal matrix, i.e.,
H = diag[h2

1; h2
2; : : : ; h2

d]. Each time, a correspondence
is made during the training phase, the observed feature is
added to the sampleS.

Note that the events, of an object exiting from one cam-
era and entering into another, will be separated by a cer-
tain time interval. We refer to this interval asinter-camera
travel time. Following are some key observations that we
have modelled in our system.

² The inter-camera travel time is dependent on the mag-
nitude and direction of motion of the person.

² The inter-camera travel time is also dependent on the
location of exit from one camera and the location of
entrance in the other.

² The locations of exits and entrances across the cameras
are also correlated.

Since the correspondences are known in the training
phase, the likely time intervals and the exit/entrance loca-
tions are learned by estimating the pdf. The reason for
using the Parzen window approach for estimation is that,
rather than imposing assumptions, the nonparametric tech-
nique allows us to directly approximate thed dimensional
density describing the joint pdf. It is also guaranteed to con-
verge to any density function with enough training samples
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[6]. Moreover, it does not impose any restrictions on the
shape of the function, neither it assumes independence be-
tween the feature set.

The prior probability of correspondence of an object
moving fromCi to Cj , i.e. P(Ci ; Cj ), is calculated from
the ratio of people that exitCi and enterCj to the total
number of people that exitedCi , during the learning phase.
The priors are normalized to sum up to one.
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Figure 1: Histograms of modi�ed Bhattacharya distance for
correspondences obtained during a training sequence. His-
tograms are shown when a person enters (a) camera 2 from
camera 1 (see Figure 2) (b) camera 1 from camera 2.

4.2 Estimating change in appearances across
cameras

In addition to the position and time information, we want to
model the change in appearance of a person from one cam-
era to another. We represent the appearance by color his-
tograms. The idea here is to learn the usual change in color
of people as they move between cameras and use this cue
for establishing correspondence. The distanceD between
two m bin histogramsk andq is computed as

D(k; q) =

vu
u
t 1 ¡

mX

i =1

q
k̂i q̂i : (7)

This is the modi�ed Bhattacharyya coef�cient [4]. One ad-
vantage of using this distance measure is that it is a metric.
Since in the training phase the correspondences are known,
the distanceD between two observations of the same object
can be measured. We �t a Gaussian distribution to these dis-
tances that were calculated during the training phase. Figure
1 shows the histograms of distances. Note that the shape is
fairly close to that of a Gaussian distribution. Now we de-
�ne probability Pi;j (Oi;a (app); Oj;b (app)jk j;b

i;a ) equal to:

pi;j (D (a; b)) =
1

q
2¼¾2

i;j

e
¡ 1

2 (
D ( a;b ) ¡ ¹ i;j

¾i;j
)2

; (8)

where¹ i;j and¾2
i;j are the mean and variance respectively,

which are calculated from the training color distance data

obtained from correspondences of observations from cam-
erai to cameraj . Note that if the cameras have non-linear
gain functions then the supposition that all the colors will
change similarly is not true.

5 Establishing Correspondences

The problem of �nding the hypothesis that maximizes the
a posteriori probability can be modelled as �nding the path
cover of a directed graph as follows: We construct a di-
rected graph such that for each observationOi;a , there is a
corresponding node in the directed graph, while each hy-
pothesized correspondencek j;b

i;a is modelled by an arc from
node of observationOi;a to the node of observationOj;b .
The weight of this arc of hypothesized correspondencek j;b

i;a

is the term, in the summation in Eq. 4, which relates tok j;b
i;a .

It can easily be seen from the de�nition of the solution (as
given in Section 3), that a hypothesized solutionK is a set
of disjoint directed paths in the graph, covering the entire
graph (i.e., every vertex is in exactly one of the paths inK ).
The solution of the MAP estimation problem is a hypothesis
K , such that the sum of weights of the arcs inK is maxi-
mum among all such sets. This problem can be optimally
solved in polynomial time, if the directed graph is acyclic,
by reducing it to �nding the maximum matching of an undi-
rected bipartite graph [15]. This bipartite graph is obtained
by splitting every vertexv of the directed graph into two ver-
ticesv¡ andv+ , such that each arc coming into the vertex
v is substituted by an edge incident to vertexv¡ , while the
vertexv+ is connected to an edge for every arc going out of
the vertexv in the directed graph. The maximum matching
of a bipartite graph can be found by anO(n2:5) algorithm
by Hopcroft and Karp [7], wheren is the total number of
vertices in graphG, i.e., the total number of observations in
the system.

The method de�ned above, assumes that the entire set of
observations is available and hence cannot be used in real
time applications. A standard approach to handle this type
of problems in real time applications is to use a sliding win-
dow of a �xed time interval. This approach is not optimal,
and the selection of window size is a tradeoff between the
quality of results and the timely availability of the output.
In order to avoid early commitment and making an erro-
neous correspondence, we adaptively select the size of slid-
ing window in the online version of our algorithm. This
is achieved by examining the space-time pdfs for all ob-
servations (tracks) in the environment that are not currently
visible in any of the cameras in the system and �nding the
time interval after which the probability of reappearance of
all these observations in any camera is below certain thresh-
old.
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6 Online update of Space-time and Appear-
ance Models

The motion trends of the objects can change with time, so
there is a need to update the position and appearance models
during the lifetime of the system. The kernel density esti-
mates can be updated simply, by adding the current obser-
vation of a correspondence to the sample set. However, we
want to `forget' the obsolete data too. This can be achieved
by estimating the density only from the most recentN sam-
ples. For real time requirements, an ef�cient method for
online kernel density estimation has been proposed by Lam-
bert et al. [13]. The Gaussian distribution for the change
in appearance model is updated by an exponential decay
scheme

¹ t = (1 ¡ ½)¹ t ¡ 1 + ½Dt ; (9)

¾2
t = (1 ¡ ½)¾2

t ¡ 1 + ½(D ¡ ¹ t )2; (10)

where D is the distance between appearances calculated
from the most recent correspondence and½is a learning
parameter.

Cam 1
Cam 2

Cam 3

A

C

B

D

Figure 2: Camera setup forBusiness Sequence.The cam-
eras were mounted approximately 15 to 30 yards apart. Dot-
ted lines are some of the paths a person can take. Field-of-
view of each camera is also shown with triangles. It took 8
to 14 seconds for a person walking at normal speed to exit
from the view of camera 1 and enter camera 2. The walking
time between camera 2 and 3 was 10 to 18 seconds. The
dark regions are patches of grass. Most people avoid walk-
ing over them.

7 Results

To evaluate the performance of our system, we performed
experiments with two different camera settings. In order to
estimate bandwidth matrixH = diag[h2

1; h2
2; : : : ; h2

d], the
range of each space-time feature for each camera pair was
computed during training. The bandwidth of each feature

A C CA

B D

(a) (b)

Figure 3: Marginal pdf w.r.t. position for transitions from
camera 2 to 3. A,B,C and D are the points of entry/exit as
seen in Fig. 2. (a) The probability of entering camera 3 at
point B from camera 2 (the peak corresponds to point A).
(b) The probability of entering camera 3 at point D from
camera 2 (the peak corresponds to the point C). Note that
the points A,B,C and D are given for illustrative purposes.
The space-time pdf's map all boundary coordinates of one
image to another.

Figure 4: Consistent labelling with two cameras and two
people in the scene. Correct Correspondences are obtained
as the persons move across the cameras.

was set to be one tenth of the range. Single camera tracking
was performed by the method proposed in [10].

The �rst experiment was done with two cameras in a
room. The training phase lasted for ten minutes and the
test was run for �ve minutes. In the testing phase, a total
of thirteen tracks were recorded in individual cameras. Our
algorithm assigned correct labels for all transitions within
the cameras and detected that there were only two persons
in the environment. The second experiment was an outdoor
sequence and involved three camerasC1, C2, C3. The cam-
era settings and their �eld of views are shown in Figure 2.
Training was done on a ten minute sequence in the presence
of multiple persons. Figure 3 shows the probabilities of en-
tering C3 at point B and D fromC2. Here the space-time
pdf correctly demonstrates the fact that the probability of
entry at point B, is higher from point A than from point C.
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Figure 5: Consistent labelling over time. Row 1 shows per-
son with label 4 moving towards camera 2. In row 2 label
4 is in the unobserved region. However, a person enters
camera 2 directly before label 4. This new entry is detected
correctly. Correct correspondences are established as peo-
ple continue to move across the environment, as shown in
subsequent frames.

This is because people like to take the shortest possible path
between two points. Note that, if a person being observed
in C1 exits from the right side, it is highly unlikely that
he would enterC2 from the right before being observed in
other cameras. This fact was also learned by the system and
the probability of enteringC2 after exiting from the right
side ofC1 was nearly zero. The testing was carried out on
a �fteen minute sequence. In this experiment, a total of 71
individual tracks were obtained. Our algorithm detected 45
transitions within the cameras with no error and correctly
determined that 27 people walked through the environment.
Figures 5 shows some tracking results from the second ex-
periment. One obvious situation, in which the tracking al-
gorithm can assign a wrong label, is if a person takes a much
longer time in the unobserved region than expected, e.g., he
stands in the unobserved region. Then, if he enters another
camera, the time constraint will force the person to be as-
signed a new label. However, our experiments demonstrate

that in most situations tracking is reliable.

8. Conclusions

We have demonstrated that tracking is possible even when
observations of objects are not available for relatively large
time periods due to non-overlapping camera views. Mul-
tiple cues including inter-camera time intervals, location of
exit/entrances, and velocities of objects are jointly modelled
to constrain correspondences. These cues are combined in
a Bayesian framework for tracking. The tracking system
begins with some prior knowledge gained from an initial
training phase. The learned parameters are continuously
updated to keep up with the changing motion and appear-
ance patterns throughout the life-time of the system. We
have presented results on realistic scenarios to validate the
proposed approach.
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