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Abstract

Recognition of human actions in a video acquired by a
moving camera typically requires standard preprocessing
steps such as motion compensation, moving object detection
and object tracking. The errors from the motion compensa-
tion step propagate to the object detection stage, resulting
in miss-detections, which further complicates the tracking
stage, resulting in cluttered and incorrect tracks. Therefore,
action recognition from a moving camera is considered very
challenging. In this paper, we propose a novel approach
which does not follow the standard steps, and accordingly
avoids the aforementioned dif�culties. Our approach is
based on Lagrangian particle trajectories which are a set of
dense trajectories obtained by advecting optical �ow over
time, thus capturing the ensemble motions of a scene. This
is done in frames of unaligned video, and no object de-
tection is required. In order to handle the moving cam-
era, we propose a novel approach based on low rank op-
timization, where we decompose the trajectories into their
camera-induced and object-induced components. Having
obtained the relevant object motion trajectories, we com-
pute a compact set of chaotic invariant features which cap-
tures the characteristics of the trajectories. Consequently, a
SVM is employed to learn and recognize the human actions
using the computed motion features. We performed inten-
sive experiments on multiple benchmark datasets and two
new aerial datasets called ARG and APHill, and obtained
promising results.

1. Introduction

Action recognition from videos is a very active research
topic in computer vision with many important applica-
tions for surveillance, human-computer interaction, video
retrieval, robot learning, etc. Various action detection ap-
proaches are reported in the literature; however, they mostly
tackle stationary camera scenarios. Recently, there has
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Figure 1. Motion decomposition for a moving camera sequence.
The ensemble motions of a sequence is captured by particle tra-
jectories, some of which solely correspond to the camera motion
(background trajectories), and the others combine both the cam-
era motion and the object motion (foreground trajectories). In this
work, we show how to extract the object motion and employ it for
action recognition. Note that the object motion component (green)
appears displaced from the actor since the actor still carries the
camera motion in the unaligned frame.

been an increasing interest in studying action recognition
from moving cameras such as in aerial videos recorded by
UAVs [34]. Action recognition from moving cameras poses
signi�cant challenges since the �eld of view is constantly
changing with the camera motion. More importantly, the
global camera motion and the local object motion are mixed
up in the acquired frames (see Figure1). Therefore, action
recognition in such scenarios imposes a critical demand to
eliminate the often dominant camera motion, and to recover
the independent motions merely resulting from the perform-
ing actors.

Traditional approaches dealing with moving cameras
usually need to go through a motion compensation step by
performing video alignment [33, 36]. Consequently, the
moving objects are detected by background subtraction, fol-
lowed by the tracking of the detected moving blobs in or-
der to compute certain motion features from the tracks to
be employed in action recognition. However, this approach



suffers from two inherent problems: First, video alignment
is dif�cult and noisy due to the perspective distortions, and
the errors in feature point detection and localization; sec-
ond, the errors from alignment and moving object detection
further propagate to the tracking stage.

In addition, a fundamental problem in action recognition
is to extract good features to describe the actions. In this
work, we focus on motion features (trajectories). Motion
trajectories are informative, compact, and spatiotemporally
continuous, which makes them useful for action recogni-
tion [1, 2, 3, 4, 5]. Automatic trajectory acquisition can
be performed by tracking. Although it is relatively easier to
track the whole body or a part of a moving object and obtain
a single trajectory corresponding to its centroid, the single
trajectory is not able to provide semantically rich motion
information for depicting complex and articulated motions.
Multiple-interest-point tracking using a tracker such as KLT
as in [17] is possible yet very challenging due to three crit-
ical factors: First, good features for tracking (e.g. corners)
need to be selected beforehand, which tends to be noisy
in cluttered sequences. Second, the selected features may
not be associated with the action of interest. Third, the ob-
tained trajectories tend to be discontinuous due to the dif�-
culty in maintaining consistent and correct point correspon-
dence; therefore, the obtained tracks usually have variable
lengths, which adds additional inconvenience for trajectory
matching and alignment [35]. In addition, several methods
employ explicit tracking markers attached to the objects to
facilitate the tracking as in [1]; however, such invasive tra-
jectory acquisition techniques are usually impractical.

In contrast to the traditional motion trajectory acquisition
mechanisms, in this paper we propose to automatically ex-
tract a set of particle motion trajectories for action represen-
tation and recognition. Particle trajectories are a set of dense
trajectories that capture the ensemble motions of a scene
through the motion of an overlaid grid of particles. The
basis of particle trajectory acquisition lies in advecting the
particles using optical �ow. The advection-based particle
trajectory acquisition follows a bottom-up method where
neither pre-de�nition of interest points nor point correspon-
dence across frames is required; hence, it is inherently dif-
ferent from traditional object tracking, and does not suffer
from any of the aforementioned problems faced by tracking-
based approaches. To the best of our knowledge, particle
trajectories have been mainly used for crowded �ow analy-
sis [18], but they have never been used for action recogni-
tion.

Furthermore, in contrast to the traditional approaches for
dealing with moving cameras where video alignment is usu-
ally employed beforehand, we propose a novel algorithm
based on robust sparse optimization that concurrently seg-
ments the trajectories corresponding to the moving object
and eliminates their camera motion component; thus pro-

viding the relevant independent particle trajectories which
correspond only to the object's motion.

Once we obtain the independent particle trajectories, we
compute a compact set of motion features consisting of
chaotic invariants and simple statistical features that de-
scribe the underlying motion properties. Consequently, a
SVM is used for action learning and recognition. Figure2
shows the overall work�ow of the proposed framework.

Computing 
Optical Flow

Particle 
Advection

Rank 
Optimization

Computing 
FeaturesSVM

Video Clip Optical Flow
Particle 

Trajectories

Object-Induced 
TrajectoriesLabels Descriptors

Figure 2. The various steps of our action recognition framework.

The main contributions of this paper are summarized as:
First, our method is the �rst to utilize the dense particle tra-
jectories of the objects for action recognition. Second, we
propose a novel approach based on low rank optimization
to robustly extract the trajectories which merely correspond
to the object's motion from the whole set of particle trajec-
tories obtained in a moving camera scenario, thus avoiding
the standard approach which requires explicit video align-
ment and moving object detection.

2. Related Work

Motion trajectories have been employed in a variety of
problems for human action representation and recognition
[1, 2, 3, 4, 13, 16, 17, 23]. Many tracking-based methods
are used or could be adapted for trajectory acquisition (for a
comprehensive review on tracking techniques, readers may
refer to relevant surveys [19]). Usually, a single trajectory
can be acquired by simple techniques such as temporal �l-
tering [3]. The tracking entity typically is either a human
body part (head, hand, foot, etc.) or a person as a whole.
For the simultaneous tracking of multiple points, KLT [20]
is a popular choice [16, 17, 24]. Statistical mixture models
are also developed for multi-trajectory tracking [2]. Some
speci�c tracking strategies (e.g. SMP [1]) are designed to
handle complicated and subtle full-body motions. A com-
mon drawback among tracking-based methods is that it is
dif�cult to obtain reliable trajectories for the reasons dis-
cussed in the previous section. In addition, several stud-
ies assume that the motion trajectories are already available
[5], or they rely on manual annotations [4], or the so-called
semi-automatic manner [13]. In contrast, the particle ad-



vection in our work is fully automatic and is very easy to
implement.

Particle trajectories have been previously used to model
crowded scenes in [18], where the �ows normally occupy
the whole frame, and the camera is static; thus, such dense
trajectories could be directly employed. We, in contrast,
adopt the particle trajectories for recognizing actions in
videos acquired from a moving camera, which imposes
several challenges since the actions usually only cover a
small part of the frame, and more importantly, the obtained
trajectories combine both the camera motion and the ob-
ject motion. Therefore, we propose a novel approach to
detect the foreground trajectories and extract their object-
induced component, which in principal requires estimat-
ing the background motion subspace. A large variety of
subspace estimation methods exist in the literature such as
PCA-based and RANSAC-based approaches. Such meth-
ods are, however, sensitive to noise which is considerably
present in our scenario since a signi�cant number of tra-
jectories can be contaminated with the foreground motion.
Fortunately, sparsity-based matrix decomposition methods
such as [26, 27, 28] which have been primarily employed
in image denoising domain, proved that a robust estimation
of an underlying subspace can be obtained by decomposing
the observations into a low rank matrix and a sparse error
matrix. Therefore, in this work, we show how Robust PCA
[27] can be adopted to extract the object motion relevant to
the action of interest.

The acquired motion trajectories can be represented
by certain descriptors to identify the underlying spatio-
temporal characteristics. Wuet al. [5] proposed a system-
atic signature descriptor that can provide advantages in gen-
eralization, invariants, and compactness, etc. Aliet al. [13]
showed that the features based on chaotic invariants for time
series analysis perform very well in modelling manually-
annotated trajectories. Meanwhile, “trajecton” was pro-
posed in a Bag-of-Words context [17] for trajectory-based
action recognition. Messinget al. [24] investigated the tem-
poral velocity histories of trajectories as a more representa-
tive feature for recognizing actions. In this work, we em-
ploy the particle trajectories and choose the chaotic invari-
ants [13] as a trajectory descriptor. It should be noted that
we adopted the algorithms in [18] for computing the chaotic
features as they have been shown more robust than [13].

Aside from trajectory features, a variety of feature rep-
resentations have been developed for action recognition
such as appearance features [9], shape-based representa-
tion [10]), volumetric features (e.g. Poisson equation-based
features [6], 3D Haar feature [7]), spatiotemporal interest
points ([8, 11, 14]), motion history image (MHI) [15], and
kinematic features [12].

3. Action Recognition Framework

We �rst employ particle advection to obtain particle tra-
jectories, and then extract the independent trajectories that
represent the object-induced motion. The extracted trajec-
tories are then described by a set of chaotic invariants and
simple statistical features, which are �nally fed to a SVM.

3.1. Lagrangian particle advection

We use the concept of a “particle” to explain our La-
grangian particle trajectory acquisition approach. We as-
sume that a grid of particles is overlaid on a scene where
each particle corresponds to a single pixel (the granularity
is controllable). The basic idea is to quantify the scene's
motions in terms of the motions of the particles which are
driven by dense optical �ow. A so-called particle advection
[18] procedure is applied to produce the particle trajectories.
Given a video clip represented by a matrix ofT � W � H ,
where T is the number of frames, andW � H denotes
the frame resolution (width by height), we denote the cor-
responding optical �ow by(U t

w ; V t
h ), wherew 2 [1; W],

h 2 [1; H ], andt 2 [1; T � 1]. The position vector(X t
w ; Y t

h )
of the particle at grid point(w; h) at timet is estimated by
solving the following equations:

dX t
w

dt
= U t

w ; (1)

dY t
h

dt
= V t

h : (2)

We use Euler's method to solve them similar to [18]. By
performing advection for the particles at all grid points with
respect to each frame of the clip, we obtain the clip's par-
ticle trajectory set, denoted byf (X t

w ; Y t
h )jw 2 [1; W]; h 2

[1; H ]; t 2 [1; T]g.
Figure3 illustrates the obtained particle trajectories for

three examples from each of our experimental datasets. The
obtained particle trajectories almost occupy the full frame
and therefore capture all the motions occurring in the scene.
It is obviously unwise to use all of the particle trajectories
for action recognition since the motion induced by the cam-
era is irrelevant to the action of interest, and hence may sig-
ni�cantly confuse the action recognition task. Therefore, in
the coming subsection, we propose a robust method to ex-
tract the foreground trajectories and concurrently eliminate
their camera motion component.

3.2. Independent Object Trajectory Extraction

The obtained particle trajectories are induced from two
motion components: rigid camera motion, and object mo-
tion. When the action of interest includes global body mo-
tion (e.g. body translation in running action), the object
motion can be further decomposed into two components:
rigid body motion, and articulated motion. We employ the
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Figure 3. Three examples from each of our experimental datasets
illustrating the obtained particle advection trajectories. Rows one,
three, and �ve show the original frames, and rows two, four, and
six show the corresponding overlaid trajectories respectively.

latest advances in sparse optimization to estimate each of
these components, and extract the object trajectories which
solely correspond to the action of interest. Without loss of
generality, we assume that the majority of the observed mo-
tion is induced by the camera motion (this is reasonable for
most realistic datasets). Therefore, the trajectories should
generally span a subspace determined by the scene struc-
ture and the camera's intrinsic and extrinsic parameters. In
order to �nd the basis for the particle trajectory subspace,
we �rst construct a2T � P ( P is the number of particles,
i.e. P = W � H ) measurement matrixM using the posi-
tion vectors of the advected particle trajectories in a clip

M =

2

6
6
6
6
6
4

X 1
1 � � � X 1

P
Y 1

1 � � � Y 1
P

...
...

...
X T

1 � � � X T
P

Y T
1 � � � Y T

P

3

7
7
7
7
7
5

: (3)

Through rank minimization, we can decomposeM into
two components: a low-rank matrixA, and the sparse error
matrixE

arg min
A;E

rank (A) s.t. M = A + E; jjE jj0 � �; (4)

where� is a constant that represents the maximum number
of corrupted measurements expected across the sequence.

Introducing the Lagrange multiplier� , we get

arg min
A;E

rank (A) + � jjE jj0 s.t. M = A + E; (5)

where� trades off the rank of the solution versus the spar-
sity of the error, and we always set it to1:1=

p
(W � H )

following the theoretical considerations in [27], and the re-
sults from our experiments. Consequently, we apply convex
relaxation to the problem by replacingrank (A) with the
nuclear norm or sum of the singular valuesjjAjj � = � i (� i ),
and replacingjjE jj0 with its convex surrogatè1 norm
jjE jj1

arg min
A;E

jjAjj � + � jjE jj1 s.t. M = A + E: (6)

Equation6 is convex and can be solved with convex op-
timization methods such as the Augmented Lagrange Mul-
tiplier (ALM) algorithm [29] which we found robust and
fast in our scenarios. The columns of the resulting low-rank
matrix A de�ne the basis of the low rank components in
the trajectories. Since the camera motion is dominant, the
subspace spanned by the major basis ofA correspond to
the desired background subspace which includes both the
background trajectories and the camera motion component
of the foreground trajectories. On the other hand, any rigid
body motions in the scene will also contribute toA; there-
fore, the subspace spanned by the rest of the basis ofA
mostly correspond to rigid body motions. Since the camera
motion subspace is approximately spanned by three basis
[21, 25], the camera motion component can be estimated
by Ac = US� V

0
, whereU andV are obtained by singular

value decomposition[U; S; V] = SV D(A), andS� is equal
to S except that all the singular values other than the most
signi�cant three are set to zero. Therefore, the rigid body
motion component is expressed byA � Ac.

Moreover, the columns of the matrixE correspond to the
deviation of each trajectory from the recovered low rank
subspace, which captures the articulated motions. There-
fore, the total object trajectoriesE t which include the artic-
ulated and the rigid body motion is given by

E t = E + A � Ac: (7)

If the action of interest involves only articulated motions
without a rigid motion component (e.g. boxing, waving,
etc.), the object motion will be mostly captured inE while
the rigid body componentA � Ac will be negligible. On
the other hand, if the action of interest involves rigid body
motion (e.g. running, walking, etc.), each ofE andA � Ac

will contribute to the total object motion. Figure4 illus-
trates the motion decomposition for two actions, “boxing”
and “carrying”.

Since additional noise is usually present, some object tra-
jectories can correspond to noise. However, the motion in
such trajectories is minor compared to the actual object's



motion; therefore, they are easily eliminated by a simple
threshold. In out experiments, we compute the sum of
squared value for the columns ofE , and accordingly se-
lect only the trajectories which attain at least10% of the
maximum value.

It is worth mentioning that we discard the boundary tra-
jectories before constructing the measurement matrixM .
The boundary trajectories are the trajectories that exhibit
particles hung-up in the scene boundaries during the advec-
tion. Therefore, the points from such trajectories will re-
main stationary during the hung-up, and the resulting trajec-
tories will not follow the complete camera motion. Hence,
including such trajectories inM could deteriorate the per-
formance of the rank minimization. Normally only a very
small set of trajectories are excluded. Figure5 depicts ex-
ample object motion detection results for four sequences
taken from each of our experimental datasets. It is clear
from the �gures that our method is able to robustly extract
the object trajectories relevant to the action of interest.

Figure 4. Two examples illustrating our proposed motion decom-
position. From left to right: the detected foreground trajecto-
riesM f , camera motion componentA c , articulated object motion
componentE , rigid object motion componentA � A c , total object
motionE t . The �rst row shows boxing action which only contains
articulated motion component; thus,A � A c is negligible, andE
andE t are similar. The second row shows carrying action which
contains both articulated and rigid body components; thus,E does
not fully represent the motion, butE t rather does. Note that the
original foreground trajectoriesM f is equal toA c + E t .

3.3. Action Description and Recognition

We use the extracted object trajectories to describe and
recognize actions. Since a particle is typically placed on
each pixel, we obtain a large number of particle trajecto-
ries. In order to get a more compact representation, we
cluster the obtained trajectories into100 clusters using k-
means, and accordingly select the cluster's centroid as the
representative trajectory for each cluster. Consequently, we
characterize an action by computing a compact set of de-
scriptors of the trajectories for training and recognition. In
that, we use the chaotic invariants features [18, 13] aug-
mented with a simple statistical feature for each of thex
andy time series of a trajectory

F = f �; L; C g; (8)

Figure 5. Each row shows an example illustrating our proposed
object motion detection method. The examples are taken from
four datasets, from top to down: ARG, UCF sports, HOHA, and
APHill. The �rst column shows all the particle trajectories (ex-
cluding boundary trajectories). The second column shows the de-
tected object trajectories. The third column shows the camera mo-
tion component (A c) in blue, and the object motion component
(E t ) in green. Please refer to our website for videos of the results.

where� denotes the variance,L denotes the Largest Lya-
punov Exponent (LLE), andC denotes the correlation di-
mension.� has been proved to be a useful feature for time
series description [13]. Meanwhile, L and C are typical
chaotic invariants which are able to identify the underlying
dynamics properties of a system (i.e., an action here). In
the embedded phase space,L provides quantitative infor-
mation about the orbits that start close together but diverge
over time, andC measures the size of an attractor. We fol-
low the algorithms described in [18] to calculateL andC.
In order to estimateL for a time seriesX , we �rst locate all
of the nearest neighbors (~X ) within the orbit in the embed-
ding space. The nearest neighbors are assumed to diverge
approximately at a rateL . We therefore have

ln dj (t i ) � ln kj + Lt i : (9)

wherej is the index of the pair of nearest neighbors,t i =
i � t, � t is the sampling period,kj is the initial separation,
anddj (t i ) denotes the distance between thej th pair of the
nearest neighbors afteri discrete time steps. Equation (9)
represents a set of approximately parallel lines and thusL
can be approximated by the slope of a �tted average line



denoted byy(t i ) = hln dj ( t i ) i
� t .

To estimate the correlation dimension, we �rst calculate
the correlation sum

S(� ) =
2

Q(Q � 1)

X

i 6= j

H (� � k ~X i � ~X j k): (10)

whereH denotes the Heaviside step function,� is a thresh-
old distance,Q is the number of points in the time series.
Consequently, we can simply deriveC by S(� ) � � C .

Finally, we use a radial basis SVM to learn action mod-
els from the feature set of training, and to recognize testing
examples. It is worth mentioning that we experimented on
several types of trajectory features, and found the selected
set of features preferable.

4. Experiment Results

We extensively experimented on the proposed action
recognition method using six datasets including four mov-
ing camera datasets (APHill, ARG, HOHA, and UCF
sports), and two static camera datasets (KTH and Weiz-
mann). APHill and ARG are two new aerial datasets which
are available for download on our website. For all of the
datasets, we use the algorithm described in [22] for com-
puting optical �ow. To reduce the computational cost, we
associate each particle with a2 � 2 grid window.

4.1. APHill action recognition

APHill is a newly formed dataset of aerial videos. It
includes6 actions with200 instances for each, except for
“gesturing” action which has42. This dataset is very chal-
lenging due to the low resolution (as low as50� 50) and the
large intra-class variations (refer to Figure3 for action ex-
amples). Using20-fold cross validation, we obtained41:8%
recognition rate. In order to evaluate the contribution of
our independent object motion estimation technique, we re-
peated the experiment using all of the initially obtained tra-
jectories instead of using only the object-induced trajecto-
ries. In such case, we observed a signi�cant decrease in
performance (only31:1%achieved), which provides a clear
evidence of the contribution of our object motion detection
method in action recognition. Figure6 shows the obtained
confusion matrix. As can be seen, walking is mostly con-
fused with running. Additionally, no actions were classi�ed
as gesturing which is mostly because the number of samples
for this action is signi�cantly less than the others. More-
over, standing is quite hard to distinguish as there are very
minor motion features associated with such action. In gen-
eral, given the dif�culty of the dataset, the performance is
quite promising.

4.2. ARGaerial action recognition

ARG-aerial is a new multi-view dataset recorded from
four viewpoints by a moving camera equipped in a freely
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Figure 6. Confusion matrix for APHill dataset.

�oating balloon. It includes9 actions, each is performed
by 12 actors. We use a subset sequences selected from one
of the viewpoints. Each sequence ranges from� 30 � 50
seconds, with several repetitions of the action pattern; thus,
we divide it into multiple shorter clips (50 frames for “dig-
ging” and “throwing”, and30for the rest). We obtain a total
of 112clips for our experiments.

A major challenge in ARG dataset arises from the large,
dramatic, and fast camera motions in most of the videos due
to the free �oating nature of the balloon. In addition, the
actors are extremely small occupying approximately only
� 2 � 5% of the full frame (frame size is1920� 1080).
Such conditions are particularly challenging for articulated
human action recognition.

We preprocess the clips by resizing them to� 25%of the
original size, and cropping out a sub-window(ranging from
� 80 � 80 � 300� 300 pixels2). Using5-fold cross val-
idation, we obtained an average recognition rate of51:8%,
and30:8% when the independent motion estimation step is
skipped, which provides additional support for the effec-
tiveness of our method. Figure7 shows the obtained confu-
sion matrix. As can be seen from the matrix, both walking
and carrying actions are mostly confused with running. In
fact, it is indeed very dif�cult to distinguish such actions
relying on only motion features. In view of the discussed
challenges, such performance is promising.

4.3. HOHA action recognition

HOHA (Hollywood Human Actions) dataset [30] in-
cludes10 types of actions extracted from movies. Almost
all of the sequences can be considered within the moving
camera domain. HOHA is very challenging due to the com-
plicated background of the realistic scenes, the large intra-
class variation, and the existing changes of shots in a sig-
ni�cant number of videos. The change of shots particularly
is a considerable challenge for obtaining continuous parti-
cle trajectories; in fact, it raises the same challenge for any
tracking-based method such as [17]. However, we found
in our experiments that the shot change often slightly cor-
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Table 1. Average Precision comparison for HOHA dataset.
Action Ours Ours(All Trajs) STIP [30] Trajecton [17]

Average 47.6% 46.3% 38.4% 21.1%

AnswerPhone48.3% 46.9% 32.1% 4.5%

GetOutCar 43.2% 34.1% 41.5% 69.0%

HandShake 46.2% 49.7% 32.3% 71.4%

HugPerson 49.3% 49.6% 40.6% 0.0%

Kiss 63.6% 49.9% 53.3% 0.0%

SitDown 47.5% 50.0% 38.6% 5.3%

SitUp 35.1% 40.0% 18.2% 11.1%

StandUp 47.3% 50.0% 50.5% 7.7%

rupts the trajectories such that no major spurious effects are
introduced.

We use the “clean” training set for training and the sep-
arate testing set for testing. We compare the performance
of our method with Trajecton [17] and space-time interest
points (STIP) [30] using the same experimental setup and
performance measure (Average Precision). Table1 shows
the comparison results, from which it can be clearly ob-
served that our method achieved a better performance than
STIP. Additionally, our method signi�cantly outperforms
Trajecton which employs KLT to acquire trajectories; this
particularly shows the advantage of our dense particle ad-
vection trajectories. Moreover, we repeated the same exper-
iment except that we used all of the initially obtained par-
ticle trajectories (i.e., independent motion estimation step
was skipped). The obtained performance, as can be seen
from column3 of the table, is still comparable to the case
where only the object trajectories are employed. Such re-
sult is expected in this dataset since the camera motion is
minor in many sequences, and more importantly, the actors
occupy the majority of the frame such that most of particle
trajectories are associated with the action of interest.

Table 2. Recognition rate comparison for UCF sports dataset.
Method Recognition Rate (%)

Ours 89.7

Kovashka et. al. [32] 87.3

Wang et. al. [31] 85.6

Ours (All Trajs) 85.8

4.4. UCF sports action recognition

UCF sports is a challenging dataset with sequences
mostly acquired by moving cameras. It includes10 sports
actions with a total of150sequences. We followed the same
processing as in [31, 32] by adding a �ipped version for
all the videos in order to enlarge the dataset. Using5-fold
cross validation strategy we obtained the performance re-
sults summarized in Table2 which demonstrates that our
method outperforms the state-of-the-art.

4.5. Action recognition from static cameras

Though our proposed method is primarily designed for
moving camera scenarios, we additionally experimented on
KTH and Weizmann datasets which can generally be con-
sidered within the static camera domain though a small part
of the videos are associated with a zoom-in and zoom-out
operations in KTH. Each sequence is divided into multiple
shorter clips ranging from20 � 50 frames per clip. We
obtained an average recognition rate of95:7% for KTH
which is closely comparable to the state-of-the-art [16] with
96:7%. For Weizmann dataset, we obtained92:8% which
we particularly compare with the closely related work of
[13] where a slightly inferior rate of92:6%is achieved with
manually obtained trajectories.

5. Conclusion

We proposed a novel method for recognizing human ac-
tions in videos acquired by moving cameras. To the best of
our knowledge, this is the �rst work which employs La-
grangian particle trajectories for action recognition. Our
method is able to extract a large number of particle tra-
jectories corresponding to the motions; therefore, it better
captures the articulation of human actions which improves
the recognition performance. Particle trajectories are easily
obtained by advecting pixel-wise optical �ow; thus, repre-
senting the ensemble motions of a scene, from which we ex-
tract the independent object motion through a novel method
using rank optimization. This enables our method to avoid
traditional trajectory acquisition techniques which require
video alignment, object detection, and tracking. Through
experiments, we have demonstrated the robustness of the
proposed approach while outperforming the state-of-the-art



on several benchmark datasets.
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