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Abstract

Unlike ezisting global shape-from-shading algo-
rithms which involve the brightness constraint in their
formulation, we propose a new algorithm which re-
places the brightness constraint by an inlensity gradi-
ent constraint. This is a global approach which obtains
the solution by the minimization of an error function
over the entire image. Through the linearization of
the reflectance map and the discretization of the sur-
face gradient, the intensity gradient can be expressed
as a linear function of the surface height. A quadratic
error funclion, which involves the intensity gradient
constraint and the iraditional smoothness constraint,
is minimized efficiently by solving a sparse linear sys-
tem using the multigrid technique. Neither the infor-
malion al singular points nor the information al oc-
cluding boundaries is needed for the initialization.

1 Introduction

The goal of shape-from-shading (SFS) is to recon-
struct the 3-D shape of an object from its 2-D intensity
image, assuming a proper reflectance map, which mod-
els the relationship between the intensity and surface
shape, is given. Surface shape can be represented by
height, gradient, normal, slant and tilt, or curvature.
Since the reflectance map is a nonlinear equation in
terms of the shape, simplifications are needed in order
to restrict the problem. The first simplification, which
is also the biggest for most SFS algorithms, is the as-
sumption of diffuse reflection: Surfaces reflect light
equally in all directions. The second simplification
assumes the illumination is from a point light source
at infinity. Other simplifications include assuming a
known viewing direction, known light source direction,
and orthographic projection. Together, these assump-
tions introduce a simple Lambertian model, which de-
scribes the intensity in terms of the cosine value of

*This work was supported by NSF grants CDA-9122006 and
CDA-9222798.

1063-6919/94 $3.00 © 1994 IEEE

508

the angle between the surface normal and the light
source direction. This model allows for the use of the
information at singular points, and occluding bound-
aries. In order to obtain a correct solution for SFS,
the local spherical assumption [8], the brightness con-
straint [1, 2, 3,4,5,6,7, 9, 10, 12, 13, 15, 17, 18], the
brightness derivative constraint {18], the smoothness
constraint [2, 4, 5, 6, 7, 9, 15], and the integrability
constraint [5, 6, 15, 18], are used in addition to the in-
formation at singular points and occluding boundaries
(1,23, 4,5, 10, 15].

The spherical assumption approximates the local
surface by a spherical patch. The brightness con-
straint minimizes the error between the reconstructed
intensity and the input intensity, and the brightness
derivative constraint minimizes the error between the
reconstructed intensity derivatives and the input in-
tensity derivatives. The smoothness constraint re-
quires that the reconstructed surface be smooth. The
integrability constraint ensures an integrable surface.

2 Previous Work

There are several simple and efficient SFS ap-
proaches which derive shape from local intensity infor-
mation. These include methods by Pentland [12, 13],
Lee & Rosenfeld [8], and Tsat & Shah [17].

Pentland [13] solved for the surface slant and tilt,
the radius of curvature, and the light source direction
using six equations obtained from the intensity, as well
as the first and second derivatives of the intensity. His
approach can classify a surface into one of five cate-
gories: Planar, cylindrical, convex, concave, or saddle
surface. However, it is limited to surfaces with equal-
magnitude principal curvatures.

Lee & Rosenfeld [8] considered the derivatives of
the intensity in both z and y directions, and found
that, in the light source coordinate system, the tilt of
the surface was the same as the angle of the intensity
gradient. This result was obtained by approximating
the local surface with a spherical patch. The slant of



the surface was estimated using the assumption that
the surface has uniform reflectance, and the brightest
point on the surface has its normal pointing in the light
source direction. The disadvantage of this approach is
its limitation to spherical surfaces.

Another approach by Pentland [12] linearized the
reflectance map in terms of the surface gradient,
through the Taylor’s series. By taking the Fourier
transform of the linearized brightness equation and
considering the relationship between the Fourier trans-
form of the surface gradient and the Fourier transform
of the height, the height can be recovered using the
inverse Fourier transform of the intensity. Since no
smoothness constraint is needed, this algorithm is ap-
plicable to complex natural surfaces. However, it has
problems with images of quadratic and higher order
surface reflectance because of the linearization of the
reflectance map.

Instead of linearizing the reflectance map in terms
of the gradient, Tsai & Shah [17] employed a discrete
approximation to the gradient first, then linearized the
reflectance map in terms of the height. Consequently,
at each pixel, the intensity could be expressed by a
linear function of the height at neighboring pixels, and
the Jacobi iterative scheme could be applied to solve
the entire linear system. This algorithm breaks down
when self-shadows exist in the image.

Although local approaches are simple and fast, they
have limitations, especially in the case of noisy real
images. Therefore, several SFS algorithms use global
information to ensure robustness. '

The first two global approaches were by Ikeuchi &
Horn [6], and Brooks & Horn [2]. Both combined the
brightness constraint and the smoothness constraint
to form an error function, then minimized it using vari-
ational calculus. In his later approach, Horn [5] added
the integrability constraint to the error function. To
solve the problem of slow convergence for Horn’s ap-
proach, Szeliski [15] used the hierarchical and precon-
ditioned conjugate gradient descent method to im-
prove the efficiency. Unlike the above algorithms,
which involve the recovery of either the surface nor-
mal or the surface gradient, Leclerc & Bobick [7] used
a discrete approximation of the surface gradient to
introduce height into the error function, which con-
sists of the brightness constraint and the smoothness
constraint. Then they directly solved for height by
taking the derivative of the error function and apply-
ing a conjugate gradient technique. All of the above
techniques require known shape information at occlud-
ing boundaries in order to enforce correct convergence.
Leclerc & Bobick’s approach needs the height output
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from stereo as the initial estimate.

Zheng & Chellappa [18] were the first to consider
the first derivative of intensity in the variational cal-
culus approach. However, their derivatives were taken
along the z and y directions. Their error function con-
tains the brightness constraint, the brightness deriva-
tive constraint, and the integrability constraint. For
smooth Lambertian surfaces, since the change of in-
tensity is small, the brightness constraint in their er-
ror function still dominates. The Taylor’s series was
applied to linearize the reflectance map, and discrete
approximations for surface gradients, and their deriva-
tives, were used. The iterative scheme was imple-
mented using a hierarchical structure to solve for sur-
face height and gradient simultaneously. The initial
values for the height and gradient could be zero.

Lee & Kuo’s approach [9] involves the brightness
and smoothness constraints. The linearization of the
reflectance map was combined with the triangulariza-
tion of the surface to express the reflectance map as a
linear function of the height. A quadratic error func-
tion was minimized by solving a sparse linear system.
The multigrid method, with successive linearization,
was used to solve this linear system. All height values
could be initialized to zero.

Both Zheng & Chellappa’s method and Lee &
Kuo’s method can recover good low frequency infor-
mation, but high frequency information, the details,
are smoothed out. Zheng & Chellappa’s results are af-
fected by the background value. Lee & Kuo’s method
tends to oversmooth the surface and the recovered
height is slanted upward in one direction.

Another approach is by Dupuis and Oliensis [3, 10,
11]. Oliensis [10] observed that the smoothness con-
straint is only needed at the boundaries if we have
initial values at the singular points. Based on this
basic idea, Dupuis and Oliensis {3, 11] developed an
iterative algorithm to recover depth using discretized
optimal control and dynamic programming. The proof
of equivalence between the optimal control representa-
tion and SFS was illustrated. Their initial algorithm
[3] requires priori depth information for all singular
points. A later extension [11] can determine this infor-
mation automatically by assuming twice differentiable
depth, isolated singular points and nonzero curvature
at singular points.

Bichsel and Pentland [1] simplified Dupuis and
Oliensis’s approach. They found that a minimum
downhill principle could remove the ambiguity intro-
duced by singular points, so that the height informa-
tion at singular points can be propagated to build
a continuous surface. The propagation follows the




principle that the height information is only passed
to pixels that are farther away from the light source.
Among all the pixels that are farther away from the
light source, choose the one that is the closest. This
approach used the concept of the derivative of the
reflectance map with respect to ¢, but, it does not
directly use the intensity gradient information. The
problem with this method is that it has difficulty with
multiple singular points and is sensitive to noise.

Common problems among existing SFS algorithms
include oversmoothing, lack of robustness, and exces-
sive execution time. To overcome these problems, we
introduce a new SFS algorithm, which follows the tra-
ditional global approach, but provides more realistic
and reliable results.

3 Shape Extraction Using the Inten-
sity Gradient

In our approach, we use neither the spherical as-
sumption as in Lee & Rosenfeld’s and Pentland’s ap-
proaches, nor do we base our algorithm on singu-
lar points. Unlike Zheng and Chellappa’s approach,
which considered the intensity derivatives in the z and
y directions, the brightness constraint, and the inte-
grability constraint, we replace the traditional bright-
ness constraint with an intensity gradient constraint.
The direction of the intensity gradient is the direc-
tion in which the shape of the surface changes the
most, therefore, this direction provides the most infor-
mation. The directional derivative of the reflectance
map, rather than the reflectance map, is linearized us-
ing Taylor’s series. The discretization of both the sur-
face gradient and its directional derivative, in terms
of height, is used in order to express the derivative
of the reflectance map as a linear function of height
at neighboring pixels. To enforce a unique solution,
the smoothness constraint, instead of the integrabil-
ity constraint, is applied. The resulting nonlinear
error function, which includes the smoothness con-
straint and the simplified intensity gradient constraint,
1s minimized through the solution of a sparse linear
system, which is solved by the multigrid technique.

We use the traditional Lambertian model, based on
the assumption of an infinite point light source:

_(=pij -0, 1)-S
VPl + ]

where I; ; is the input intensity at pixel (4, 7), which
is equal to the reflectance map Ri;, (pij, ¢ij) is the
surface gradient, and S = (S, Sy, S.) is the unit light

lij=Ri; (1)
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source direction. We then take the directional deriva-
tive of the reflectance map along the intensity gradient
direction d; ;:

Ra,; = A(=Sepai; ~ Syqa, ;)(Pl; + 42, +1)
—(8z = Sapi; = Syqi;)(Pispai, +4is04, ;)
/{h, + a2y + )3, (@)
where py, ; and qq, ; are the directional derivatives of
pij and g¢; ; along the intensity gradient direction.
The first order Taylor’s expansion around the fixed

point (ﬁ;‘,j,qt"j,ﬁdh-,qd'd) yields the following linear
approximation to the directional derivative:

Rdx.i ~ Rda,,‘ (ﬁh]yqt,],ﬁd._j,(id,‘])

Rd,‘], _ IR, ; B
+ e (Pai,; — Pay ;) + P04, (94i,; — qa;,;)
IRy, . OR4. .
+ 22 (pi; — Pij) + “2(gi,; — Gis), (3
P (pi ;) e (9i.5 = @is) (3)

By rewriting equation (3), we obtain:

Ra,; = oispij+Bisqiy +viipa;,
+di, 9d; 5 + Mg, 4)
9Ra, ORa,
o = _ i =
t,) ap'_d W2 36];‘,] )
ORa; . .. ORg, .
Ty = =, éi,j = T’
AT 3
W = Ra; j (i, GissPa,; Qdi;) — @isPi; — Bijdis

—YisPd;,; — Pis G, ;-

We use the following discrete approximations for Pij
4,5, and their derivatives:

Dij Zij — Zij-1,
% = Zij— Zi41,
Pri; = Zij—2zij_ 1+ 2 2,
Pyiy = Zij—Zij-1— Zig15 + Zig15-1,
9ri; = Zij = Zig1j — Zij-1+ zig15-1,
Qyi; = Zij—2ziy15+ zigo,
Pa,; = Po AT+ py, Ay,
iy = 4o, ;8%i 5+ qy, Ay,
where Pz,; and gz, . are derivatives in the z direc-

tion, py, . and gy, ; are derivatives in the y direction,
Az;; = cosf, and Ay; ; = sinf (6 is the angle of the
intensity gradient at pixel (7,7)). Then equation (4)
can be expressed as a linear function of the height at
neighboring points:

Ra,; = aij(zi;~zi5-1) + Bij(zi; — zig15)
+visl(zi5 — 22051 + 2i5-2) Az

H(2i5 ~ zij—1 ~ zit1,; + 2i41,5-1)Ayi 5]
+6i5[(205 = zit1,5 — 2i 51 + zig1,,-1) AT

+(zi5 = 2zi41,5 + zig2,5)Ayi 5]+ 1 (5)



Now compute the height, z; j, by minimizing

n—1
Z {(Ua; — Rdi,j)2 + ’\(P:.',J +7’§.‘.j + Q:;,j + q:.,j)}v (6)

$,7=0

where, n is the image size, and ) is the weight of the
smoothness term. The first term is the intensity gradi-
ent constraint, and the second term is the smoothness
constraint. Substituting R4, ; from equation (5) for
the first term of (6), we obtain:

n-—1

2 2 2 2
D Aad i+ b2

£,7=0

2 2 2 2
+Ci%iv ;T iz oot

el jelpyjor+ Fel y + 2aigbijzi gz +
@i jCijzijZig1,j + @i jdijzijzij_2+

;€% j%ip1j—1 + @i fij%ij s +
bijcijzij—12i41,5 + bijdijzijo12ij-2 +
bijeijzij—12it1,j-1 T bijfijzij-12i425 +
Ci,jdij2i41,5 %52 + Cij€ijZit1,j2it1,5-1+
CijfijZidr,jzive,j +dijeijzij-2ziq1 -1 +
dijfijzij-2%it2,; + € fijZig1,j-12i42,5 +
Gij9ii%,5 + bij9iizi -1+ ¢ii9ijzie +

di jgijzij-2+ € jgijziet,i-1+ fij9i5%i+2,5]

where

a;i; = —a;j—Bi;—vij(Azij+ Ayi;)
—¢ii(Azij + Ay ),

bi; = i +v;(2A8zi; + Ay i)+ ¢i Az,

cij = Bij+viiAuij+ dij(Azij+ 2Ay: ;)

di; = —vijAzi;, ej=—v;Aui; — ¢i;Ar;;,

fij = —0ijAyij;,  gij=la,; +mj;.

The second term of equation (6), the smoothness
constraint, can be represented by a template, to be
applied to the 2-D height, as follows [9, 16}

1

1 2 -8 2
Vi—e|1l -8 20 -8 1 (8)
h?
2 -8 2
1

Here, h is the spacing between pixels. The templates
for the image boundary can be found in [9, 16].
Equation (7) can be rewritten in a matrix form:

%ZTUZ —wTz 4 p.
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Adding the smoothness term (8) to this quadratic
equation, we have:

1

2zTTz -T2 + u,

(9)
where T = U+ AV. U is an n? x n? symmetric, sparse
banded matrix consisting of the second order terms of
(7).

The vector w is an n? x 1 vector consisting of the
first order terms of (7). Finally, i is a scalar consisting
of the sum of the constant terms of (7):

n—1
= Z gz?,j-

4,j=0

The minimization of expression (9) is done by solv-
ing the linear system Tz = w.

4 Multigrid Technique

The basic idea behind the multigrid method is to
combine a traditional relaxation method with coarse-
grid correction, so that the error generated in the
finer grid can be corrected in the coarser grid to yield
a more efficient, and accurate, solution. The num-
ber of grid levels, L, in one iteration of the multigrid
method is determined by the size of the image, n, to
be L = log,n — 1. The multigrid method can be per-
formed iteratively by using the solution from the pre-
vious iteration as the initial value for the next. One
iteration of the multigrid method, from the finest grid
to the coarsest and back to the finest, is called a cycle.
There are different structures for the cycle [14]. We
use the V-cycle structure.

In our multigrid implementation, Gauss-Seidel was
used for both the relaxation method and exact solver.
Full-weighting restriction was applied to transfer the
residual from finer grids to coarser grids, and bi-linear
prolongation was applied to make the correction from
coarser grids to finer grids. At each level, the size of
the grid is reduced by half.

5 Results

Among existing SFS techniques, Lee & Kuo’s ap-
proach provides very good results. They also applied
the multigrid technique, therefore, we implemented
their algorithm and compared the results with ours.

The results for our algorithm are given after one
multigrid cycle; since the results after one cycle are
already accurate enough, any extra cycles would not
yield any significant improvement. However, the prop-
erty of coarse-to-fine-correction in the multigrid tech-
nique makes even one cycle meaningful. The smooth-
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Figure 1: Results for Penny. (a) The input Penny
image with light source (5, 5, 7). (b) Shaded image for
our output using light source (—5,5,7). (c¢)-(d) 3-D
plot of the recovered depth from Lee and Kuo’s algo-
rithm and its shaded image using light source (5,5, 7).
(e)-(f) 3-D plot of the recovered depth from our algo-
rithm and its shaded image using light source (5,5, 7).
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Figure 2: Results for real images. (a) David (the es-
timated light source direction is (—0.707,0.707,1)).
(b) Lenna (the estimated light source direction is
(1.5,0.866,1)). (c)-(f) 3-D plots of the recovered
height from Lee & Kuo’s algorithm ((c),(d)), and from
our algorithm ((e),(f)).

Table 1: CPU time (in seconds)
I Il

Images 1

([ Methods [ Penny | David | Lenna I
Lee & Kuo 2678.29 | 1077.22 | 14546.79
Proposed method 374.37 814.39 1215.19
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ing factor A was chosen as 2000. The maximum num-
ber of iterations for Gauss-Seidel is 500. The initial
heights were chosen as zero for all tests.

The results of the proposed algorithm are shown for
one synthetic image Penny with light source (5,5, 7,
and two real images with the light source directions
estimated by Lee & Rosenfeld’s method [8]: Lenna
(the estimated light source direction is (1.5,0.866, 1)),
and David (the estimated light source direction is
(=0.707,0.707, 1)). The results for Lee & Kuo’s algo-
rithm, and for our own algorithm, are shown in Figures
1 and 2.

For Penny, Lee and Kuo’s method loses a lot of de-
tail, which causes the shaded output image to appear
blurry. Moreover, the 3-D plot shows that their al-
gorithm recovers a twisted background of the penny.
On the other hand, our algorithm does not seem to
exhibit any of these problems. The mean surface gra-




dient error is 1.14 for Lee and Kuo’s algorithm and
0.47 for ours.

For David, the recovered height from Lee & Kuo’s
algorithm is very flat, even for small A values. In con-
trast, our algorithm gives very good, detailed height
information. Lee and Kuo’s algorithms recovered very
good height information for the real image Lenna, but,
details are missing. Our result for Lenna shows accu-
rate details. The rough height recovered in the area
of Lenna’s hair is due to the change in albedo, which
violates the constant albedo assumption.

Although both Lee and Kuo’s and our algorithms
employ the multigrid technique, our method is sig-
nificantly faster than Lee & Kuo’s, no matter what
threshold is used for Gauss-Seidel. This can be seen
in Table 1. The analysis was done using a Sun SPARC
4.

In general, derivatives are sensitive to noise. How-
ever, our results for real images have shown that if we
consider the derivative along the intensity gradient di-
rection, the sensitivity to noise can be greatly reduced,
with the help of regularization.

6 Conclusions

We presented a new SFS algorithm, which replaced
the traditional brightness constraint with an intensity
gradient constraint based on the fact that the direction
of the intensity gradient is the direction in which the
shape changes the most. The results have shown that
our algorithm has robust performance for different real
images, and that it is more efficient than the existing
multigrid SFS technique.
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