
 

 

 Abstract 
 

In this paper, we propose a novel approach for learning 
generic visual vocabulary. We use diffusion maps to au-
tomatically learn a semantic visual vocabulary from ab-
undant quantized midlevel features. Each midlevel feature 
is represented by the vector of pointwise mutual informa-
tion (PMI). In this midlevel feature space, we believe the 
features produced by similar sources must lie on a certain 
manifold. To capture the intrinsic geometric relations be-
tween features, we measure their dissimilarity using diffu-
sion distance. The underlying idea is to embed the midlevel 
features into a semantic lower-dimensional space. Our 
goal is to construct a compact yet discriminative semantic 
visual vocabulary.  

Although the conventional approach using k-means is 
good for vocabulary construction, its performance is sen-
sitive to the size of the visual vocabulary. In addition, the 
learnt visual words are not semantically meaningful since 
the clustering criterion is based on appearance similarity 
only. Our proposed approach can effectively overcome 
these problems by capturing the semantic and geometric 
relations of the feature space using diffusion maps. Unlike 
some of the supervised vocabulary construction ap-
proaches, and the unsupervised methods such as pLSA and 
LDA, diffusion maps can capture the local intrinsic geo-
metric relations between the midlevel feature points on the 
manifold. We have tested our approach on the KTH action 
dataset, our own YouTube action dataset and the fifteen 
scene dataset, and have obtained very promising results. 

1. Introduction 
In the field of computer vision, bag of features (BOF) is 

receiving increasing attention due to its simplicity and 
surprisingly good performance on object, scene, and action 
recognition problems. The underlying idea is that a variety 
of statistical cues are present in images and videos, such as 
color or edge patterns and local structural elements [7, 15, 
18], which can be effectively used for recognition.  Inspired 
by the success of the bag of words (BOW) approach in text 
categorization [12], computer vision researchers have re-
cently discovered the connection between local patches in 
images/videos and words in documents. In the BOW text 
representation, a document is represented as a histogram of 
words. In order to employ the BOW to represent an image 

or video, we need to quantize the local patches into visual 
words. The k-means algorithm is commonly used to con-
struct an initial visual vocabulary due to its simplicity. 
However, it has two major drawbacks, the first being that 
the quality of the visual vocabulary is sensitive to the vo-
cabulary size [26]. In general, thousands of visual words 
are used to obtain better performance on a relatively large 
dataset. But this vocabulary may contain a large amount of 
information redundancy. On the other hand, since the 
clustering criterion is only based on the appearance simi-
larity, k-means is unable to capture the semantic relation 
between the features. This semantic relationship is useful 
for image and video understanding. 

Several attempts have been made to bring the semantic 
information into visual vocabularies. We can categorize 
these attempts into two major classes: the supervised and 
unsupervised approaches. The supervised approaches use 
either local patch annotation [27] or image/video annota-
tion [9, 13, 17, 28, 30] to guide the construction of a se-
mantic visual vocabulary. Specifically, Vogel et al. [27] 
construct a semantic vocabulary by manually associating 
the local patches to certain semantic concepts such as 
“stone”, “sky”, “grass”, etc. The obvious drawback is that 
this approach is infeasible due to the large amount of ma-
nual labor required.  Yang et al. [30] proposed unifying the 
vocabulary construction with classifier training, and then 
encoding an image by a sequence of visual bits that con-
stitute the semantic vocabulary. Another interesting work 
utilizes randomized clustering forests to train a visual se-
mantic vocabulary [17].  The classification trees are built 
first, but instead of using them for classification, the au-
thors assign a visual word label to each leaf, which is how a 
semantic visual vocabulary is constructed. In addition, 
several other works [9, 13, 16, 28] use mutual information 
between the features and class labels to create the semantic 
vocabulary from an initial and relatively larger vocabulary 
quantized by the k-means algorithm (Hereafter, we will call 
the visual words in the initial vocabulary midlevel features 
in order to distinguish them from the low-level raw features 
and high-level semantic vocabulary features).    

Some unsupervised approaches [1,2,8,14,22,24,29] were 
inspired by the success of the textual topic models in text 
categorization, such as pLSA [2, 22, 24, 29] and LDA [8]. 
Those models represent an image or video as the mixture 
distribution of hidden topics that can essentially be a se-
mantic visual vocabulary. There is a soft mapping between 
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the hidden topics and the midlevel features. Liu et al. [14] 
used maximization of mutual information (MMI) to obtain 
the optimal size of the visual semantic vocabulary for ac-
tion recognition. We observe that semantically similar 
features generally have a higher co-occurrence value in the 
dataset. This is the intrinsic reason that both the topic and 
MMI model can be successfully used to construct a se-
mantic vocabulary.  

Both the supervised and unsupervised approaches ob-
tained good performance on object, scene, and action rec-
ognition. This is because the semantic visual vocabulary 
can capture not only the appearance similarity but also the 
semantic correlation between the midlevel features. We can 
explain this point clearly using an example in text catego-
rization. For instance, “pitching”, “score” and “team” can 
be correlated to each other by “baseball”; while “biker”, 
“wheel”, and “ride” may be correlated to each other by 
“motorcycle”. Hence, we conjecture that the midlevel fea-
tures produced by similar sources are apt to lie on dynamic 
feature manifolds. In other words, there exist strong cor-
relations between each dimension of the features, which 
means the features may have a limited number of degrees of 
freedom.  

However, very few attempts have been made to expli-
citly preserve the manifold geometry of the feature space 
when constructing the semantic visual vocabulary. In this 
paper, we propose to use the diffusion distance, an explicit 
metric that reflects the connectivity of the feature points 
(geometric structure between the points), to measure the 
semantic distance between two feature points when con-
structing a compact semantic vocabulary. Diffusion dis-
tance is derived from diffusion maps (DM)  which embeds 
the manifold points into a lower-dimensional space while 
preserving the intrinsic local geometric data structure [5, 
23]. The diffusion process begins by organizing the data 
points into a weighted graph (where the weight between 
two feature points is the feature similarity), which is a good 
way to represent the complex relationships between the 
feature points. Once we normalize the weight matrix and 
also make it symmetric and positive, we can further in-
terpret the pairwise similarities as edge flows in a Markov 
random walk on the graph. In this case, the similarity is 
analogous to the transition probability on the edge. Then 
utilizing the spectral analysis on the Markov matrix of the 
graph, we can find the dominant k eigenvectors as the 
coordinates of the embedding space and map the feature 
points to the low-dimensional space while preserving their 
local geometric structures. In addition, by adjusting the 
time of the Markov chain, DM can be also used to employ 
multi-scale analysis on the data. This multi-scale analysis is 
similar to Pyramid Match Kernel (PMK) [10], which per-

forms matching under different resolutions of the feature 
space. If we consider the embedding process as clustering, 
DM embeds semantically similar features into the same 
cluster (i.e. some concept). The size of the cluster or the 
range of the concept is defined by the diffusion time. A 
larger diffusion time corresponds to a bigger cluster, which 
means a larger range of concept. For instance, “sport” is on 
a larger scale than “baseball” and “football”; and “base-
ball” is on a larger scale than “team”.  With the multi-scale 
data analysis, we can match the data under different scales.  
   In fact, DM is one of the techniques used for manifold 
dimension reduction like PCA, ISOMAP [4], Laplacian 
Eigenmaps [3], etc. In many applications, the distances 
between feature points that are far apart are meaningless, so 
preserving the local structure is sufficient for the embed-
ding. Unlike DM, PCA and ISOMAP are global techniques 
that do not preserve local geometric information of the 
feature space. In addition, PCA is unable to handle nonli-
near manifold data points.  Since the diffusion distance 
derived from DM uses all the paths between two points to 
compute the distance, it is more robust to noise than the 
geodesic distance (shortest path distance) used by 
ISOMAP. DM is very similar to Eigenmaps-based ap-
proaches. However, since the embedding coordinates are 
weighted eigenvectors of the graph Laplacian, DM has an 
explicit distance measure induced by a nonlinear embed-
ding in the Euclidean space. Eigenmaps representation does 
not have any explicit metric in the embedding space. Ad-
ditionally, DM can employ multi-scale analysis on the 
feature points by defining different time values of the 
random walk.          

In this paper, we represent the midlevel features using 
Pointwise Mutual Information (PMI) [21], which is em-
ployed to measure the correlation of two variables, i.e. 
features and images or videos. We can consider mutual 
information as the expectation of PMI. 

1.1. Overview of the diffusion maps framework 
Fig. 1 shows the major steps for constructing a semantic 

visual vocabulary using diffusion maps. There are 4 com-
ponents: extracting raw features, quantizing raw features 
into midlevel features using k-means, embedding midlevel 
features and constructing visual vocabulary using k-means. 
We extract local patches (cuboids) from images (videos) 
and represent them with the corresponding descriptors. 
These raw features are quantized into an initial visual vo-
cabulary using k-means based on their appearance similar-
ity. We call these quantized features midlevel features. 
Then each midlevel feature is represented by a vector, 
where each element corresponds to PMI of the feature with 
a particular image or a video. Next, the midlevel features 

Figure 1: Flowchart of learning semantic visual vocabulary. 
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are embedded into a lower-dimensional semantic space 
using DM. Since the distance between any two feature 
points is measured by the diffusion distance, we can further 
apply k-means with diffusion distance to construct the final 
semantic visual vocabulary.  

We have tested our proposed approach on the KTH ac-
tion dataset [15], our own YouTube action dataset, and the 
fifteen scene dataset [20]. Very inspiring results have been 
obtained on them.     

2. Diffusion maps  
   In this section, we cover the background material related 
to diffusion maps embedding which follows the description 
in paper [5] and [23].  
   Graph-based data representation is an effective way to 
capture the structure information of the data. The distance 
between two nodes is often defined as the shortest path 
separating them, which is also called geodesic distance. 
However, it is sensitive to noise and lack of structure in-
formation of the data. The diffusion distances can over-
come these shortcomings. 
   Given the n x m feature-video/image co-occurrence ma-
trix A of the training data, we construct a graph G (Ω, W) 
with n nodes on the midlevel feature set Ω (please refer to 
Section 3 for the details), where W = {𝑤𝑤𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )} (𝑥𝑥𝑖𝑖  is 
the i-th row of A) is its weighted adjacent matrix that is 
symmetric and positive. The definition of 𝑤𝑤𝑖𝑖𝑖𝑖 (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )  is 
totally application-driven, but it needs to represent the 
degree of similarity or affinity of two feature points. In our 
case, suppose that the midlevel features are on a manifold, 
we use a Gaussian kernel function, leading to a matrix with 
entries 

𝑤𝑤𝑖𝑖𝑖𝑖 �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 � =  𝑒𝑒−
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

2𝜎𝜎2 ,                          (1) 
where 𝜎𝜎2  indicates the variance of the Gaussian. This 
weighted graph G with W represents the local geometric 
relationships between the midlevel features.  

Then, a Markov random walk can be constructed on the 
feature graph G using the dynamical systems theory. It is 
intuitive that if two nodes are closer (more similar), they are 
more likely transmitted to each other. Therefore, the nor-
malized edge weight can be treated as the transition prob-
ability between them. As a result, we form Matrix 𝐏𝐏(𝟏𝟏)= 
{𝑝𝑝𝑖𝑖𝑖𝑖

(1)} by normalizing matrix W such that its rows add up 
to 1.                                                                                 

𝑝𝑝𝑖𝑖𝑖𝑖
(1) = 

𝑤𝑤𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘

.                             (2) 
Therefore, each entry of P can be considered as the transi-
tion kernel of the Markov chain on G. In other words, 
𝑝𝑝𝑖𝑖𝑖𝑖

(1)defines the transition probability from node i to j in a 
single time step and P defines the entire Markov chain. 𝐏𝐏(𝟏𝟏) 
reflects the first-order neighborhood geometry of the data. 
We could run random walk forward in time to capture 
information on larger neighborhoods by taking powers of 

the matrix P. The forward probability matrix for t time 
steps  𝐏𝐏(𝒕𝒕) is given by [𝐏𝐏(𝟏𝟏)]𝑡𝑡 . The entry  𝐏𝐏𝐢𝐢𝐢𝐢

(𝐭𝐭) measures the 
probability of going from i to j in t time steps. 
   In such a framework, a cluster is a region in which the 
probability of escaping this region is low. The higher the t, 
the higher the probability weight can be diffused to other 
points which are further away. It means the quantities in 
 𝑷𝑷(𝒕𝒕) reflect the intrinsic geometry of the data set defined 
via the connectivity of the graph in a diffusion process and 
the diffusion time t plays the role of a scale parameter in the 
data analysis. Generally, larger diffusion time means lower 
data resolution representation.  
    Subsequently, The diffusion distance D is defined using 
the random walk forward probabilities 𝑝𝑝𝑖𝑖𝑖𝑖

(𝑡𝑡)  to relate the 
spectral properties of a Markov chain (its matrix and its 
eigenvalues and eigenvectors) to the geometry of the data. 

[𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )]2 = ∑
(𝑝𝑝𝑖𝑖𝑖𝑖

(𝑡𝑡)−𝑝𝑝𝑗𝑗𝑗𝑗
(𝑡𝑡))2

𝜑𝜑(𝑥𝑥𝑞𝑞 )(0)𝑞𝑞∈Ω . 

where 𝜑𝜑(𝑥𝑥𝑞𝑞)(0) is the unique stationary distribution which 
measures the density of the data points. It is defined by  
𝜑𝜑(𝑥𝑥𝑞𝑞)(0) = 𝑑𝑑𝑞𝑞

∑ 𝑑𝑑𝑗𝑗𝑗𝑗
 , where 𝑑𝑑𝑞𝑞  is the degree of node 𝑥𝑥𝑞𝑞  de-

fined by 𝑑𝑑𝑞𝑞= ∑ 𝑝𝑝𝑞𝑞𝑞𝑞𝑗𝑗 . Note that pairs of data points with 
high forward transition probability have a small diffusion 
distance. In other words, the diffusion distances will be 
small between two points if they are connected by many 
paths in the graph. This notion of proximity of points in the 
graph reflects the intrinsic geometry of the set in terms of 
connectivity of the data points in a diffusion process. The 
idea behind the diffusion distance is that it is computed on 
many paths through the graph. Compared to the shortest 
path method, diffusion distance takes into account all the 
evidence relating xi to xj, so it is more robust to noise.   

2.1. Diffusion maps embedding 
    Using the spectral theory of the random walk, matrix P 
has n eigenvectors 𝜆𝜆𝑠𝑠  and eigenvalues 𝜈𝜈𝑠𝑠 such that: 

𝐏𝐏𝜈𝜈𝑠𝑠 =  𝜆𝜆𝑠𝑠𝜈𝜈𝑠𝑠 (𝑠𝑠 = 0,1, … ,𝑛𝑛 − 1), where 𝜆𝜆𝑠𝑠 ≥ 𝜆𝜆𝑠𝑠+1. 
Then the diffusion distance can be computed from the 
eigenvectors and eivenvalues of P(t)( please refer to [23] for 
the details) : 

[𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )]2 = ∑ (𝜆𝜆𝑠𝑠𝑡𝑡 )2𝑛𝑛−1
𝑠𝑠=1 (𝜈𝜈𝑠𝑠(𝑥𝑥𝑖𝑖) − 𝜈𝜈𝑠𝑠(𝑥𝑥𝑗𝑗 ))2, 

where 𝜈𝜈𝑠𝑠(𝑥𝑥𝑖𝑖) is the i-th dimension of 𝜈𝜈𝑠𝑠, which means it is 
the embedding coordinate of 𝑥𝑥𝑖𝑖  on axis 𝜈𝜈𝑠𝑠 . Here, 𝜆𝜆0 ≡ 1 
that corresponds to constant eigenvector is not included. 
The distance can be approximated with the first k eigen-
vectors. We only need a few terms in the above sum for 
certain accuracy because of the decay of the eigenvalues. 
The diffusion distance can then be approximated with rel-
ative precision δ using the first k nontrivial eigenvectors 
and eigenvalues according to  

[𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )]2 ≃ ∑ (𝜆𝜆𝑠𝑠𝑡𝑡 )2𝑘𝑘
𝑠𝑠=1 (𝜈𝜈𝑠𝑠(𝑥𝑥𝑖𝑖) − 𝜈𝜈𝑠𝑠(𝑥𝑥𝑗𝑗 ))2, 



 

 

where 𝜆𝜆𝑘𝑘
𝑡𝑡 > 𝛿𝛿𝜆𝜆1

𝑡𝑡 . If we use the eigenvectors weighted with 
𝜆𝜆 as coordinates on the data, 𝐷𝐷 (𝑡𝑡) could be interpreted as 
the Euclidean distance in the low-dimensional space. 
Hence, we introduce diffusion map embedding and the 
low-dimensional representation is given by 

Πt : 𝑥𝑥𝑖𝑖 ⤇ {𝜆𝜆1
𝑡𝑡 𝜈𝜈1(𝑥𝑥𝑖𝑖)   𝜆𝜆2

𝑡𝑡 𝜈𝜈2(𝑥𝑥𝑖𝑖) … 𝜆𝜆𝑘𝑘𝑡𝑡 𝜈𝜈𝑘𝑘(𝑥𝑥𝑖𝑖)}𝑇𝑇         (3) 
    The diffusion map Π𝑡𝑡  embeds the data into a Euclidean 
space in which the distance is approximately the diffusion 
distance: 

[𝐷𝐷(𝑡𝑡)(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 )]2 ≃ �Πt(𝑥𝑥𝑖𝑖) − Πt(𝑥𝑥𝑗𝑗 )�2 . 
The scaling of each eigenvector by its corresponding 

eigenvalue leads to a smoother mapping in the final em-
bedding, since higher eigenvectors are attenuated. The 
mapping provides a realization of the graph G as a cloud of 
points in a lower-dimensional space, where the rescaled 
eigenvectors are the coordinates.  The dimensionality re-
duction and the weighting of the relevant eigenvectors are 
dictated by both the diffusion time t of the random walk and 
the spectral fall-off of the eigenvalues. Diffusion maps 
embed the entire data set in a low-dimensional space in 
such a way that the Euclidean distance is an approximation 
of the diffusion distance. We summarize the procedure of 
DM in Algorithm 1. 

Algorithm 1 Procedure of diffusion maps embedding. 
Objective: Given n points {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑛𝑛  in a high dimensional 
space Ω, embed all points into a k-dimensional space. 

1. Construct a graph G with n nodes: add an edge between 
nodes i and j using Gaussian kernel. 
2. Construct the weight matrix W: if nodes i and j are 
connected, the edge weight  𝑤𝑤𝑖𝑖𝑖𝑖 is computed by Equation 1.  
3. Create Markov transition matrix P: normalize matrix W 
using Equation 2 such that its rows add up to 1. 
4. Compute Markov transition matrix P(t) at diffusion time t 
5. Perform eigen-decomposition on P(t), and obtain eigen-
values  𝜆𝜆𝑠𝑠  and eigenvectors 𝜈𝜈𝑠𝑠, such that  𝑃𝑃(𝑡𝑡)𝜈𝜈𝑠𝑠 =  𝜆𝜆𝑠𝑠𝜈𝜈𝑠𝑠. 
6. Embed data by DM as Equation 3.  

2.2. Robustness to noise 
As aforementioned, the diffusion distance is robust to 

noise and small perturbations of the data. This results from 
the fact that the diffusion distance reflects the connectivity 

of nodes in the graph.  In other words, the distance is 
computed from all the paths between two nodes s.t. all the 
“evidences” are considered. Although one of the paths may 
be affected by the noise, it contributes little to the total 
diffusion distance. However, the geodesic distance that is 
used in ISOMAP only considers the shortest path between 
two points, so it is sensitive to noise. Therefore, diffusion 
distance is more robust than geodesic distance to noise. In 
the following paragraphs, we want to verify this fact on a 
synthetic spiral [23] and the real action dataset.  
   We generated 1,000 instances of two-dimensional spiral 
with Gaussian noise (see Fig. 2). As for each instance of 
spiral, we construct a graph by connecting any two points 
whose Euclidean distance is less than a threshold δ. When 
constructing the adjacency matrix W, wij is computed using 
Equation 1 for the connected points. In order to ensure the 
connectivity of the graph, wij is set to a small number for 
any two non-connected points.  We picked two fixed points 
A and B from all instances, and computed the diffusion 
distance and geodesic distance between them. Fig. 2 shows 
the distribution for the distances on all the trials. From it we 
can easily see the geodesic distance has much larger stan-
dard deviation than the diffusion distance. This shows that 
geodesic distance is more sensitive to the noise as com-
pared to the diffusion distance. 

We further verified the robustness of diffusion distance 
on the KTH dataset. We selected two midlevel features (A 
and B) that have the maximum Euclidean distance in an 
initial visual vocabulary with 1,000 visual words (midlevel 
features). Then we added Gaussian noise to the rest of the 
features, and repeated this procedure 500 times. For each 
trial, we constructed a graph as we described in section 2.  
The distributions of the diffusion distances and geodesic 
distances between midlevel features A and B are shown in 

Figure 3: The distribution of (a) diffusion distance and (b) geodesic 
distance between two midlevel features.  

(b) (a) 

Figure 2: (a) Two dimensional spiral points. (b) The distribution of the diffusion distance between point A and B. 
(c) the distribution of the geodesic distance between point A and B. 

(a) (b) (c) 



 

 

Fig. 3. Although the distribution of geodesic distance is 
better than that of the synthetic spiral, we can still see that 
diffusion distance has smaller standard deviation than 
geodesic distance, which further verifies that diffusion 
distance is more robust.   

3. Feature Extraction 
In this section, we briefly describe the methods to extract 

raw features (i.e. motion features for action recognition and 
SIFT features for scene classification), and then how to 
generate and represent the midlevel features.   

Motion features for action recognition: We use the spa-
tiotemporal interest point detector proposed by Dollar et al. 
[7]. Compared to the 3D Harris-Corner detector [15], it 
produces dense features that can improve the recognition 
performance in most cases. It utilizes 2-D Gaussian filter 
and 1-D Gabor filters in spatial and temporal directions 
respectively. A response value is given at every position (x, 
y, t). It produces high responses to the temporal intensity 
change points. The interest points are selected at the loca-
tions of local maximal responses, and 3D cuboids are ex-
tracted around them. For simplicity, we use the flat gradient 
vectors to describe the cuboids with PCA being utilized to 
reduce the descriptor dimension (e.g. 100 dimensions in our 
paper), which we call the gradient PCA descriptor.   

SIFT features for scene classification: It has been shown 
that the dense features can achieve a better classification 
rate than sparse interest point features for the scene classi-
fication [31,8] problem. In this paper, we utilize dense 
features sampled using regular grid with space M=8 pixels. 
The patch size is randomly sampled between scales of 10 to 
30 pixels. SIFT descriptor [18] is computed for each patch.  

Midlevel feature representation: Once we extract the raw 
features (low-level features), we use k-means clustering to 
quantize these gradient PCA features or SIFT features into 
C clusters, which are the midlevel features forming the 
initial vocabulary. In general, a larger C value can obtain 
better performance. We choose C equals 1,000 and 2,000 
for the action dataset and scene dataset respectively. In 

order to construct the semantic vocabularies based on the 
midlevel features, we use PMI to represent the midlevel 
features. Suppose we have Nt number of training images or 
videos; we compute the PMI between a training im-
age/video x and midlevel feature y as 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥; 𝑦𝑦) = log⁡� 𝑓𝑓𝑥𝑥𝑥𝑥
∑ 𝑓𝑓𝜀𝜀𝜀𝜀𝜀𝜀 ∑ 𝑓𝑓𝑥𝑥𝑥𝑥𝜔𝜔

�, 

where fxy= cxy/Nt, cxyis the number of times feature y ap-
pears in image or video x. Then we can represent the mid-
level feature y in terms of an Nt dimensional feature vector, 
and the distance between any two features y1 and y2 can be 
computed using equation 1. 

4. Dataset and Experiments  
We tested our approach on the KTH action dataset, our 

own YouTube action dataset, and the fifteen scene dataset. 
SVM with Histogram Intersection kernel is chosen as the 
default classifier. For the action dataset, we perform the 
leave one out cross validation (LOOCV) scheme, which 
means 24 actors or groups are used for training and the rest 
for testing. For the fifteen scene dataset, we randomly se-
lected 100 images from each category for training, and the 
rest for testing.  

4.1. Experiments on KTH dataset 
The KTH dataset contains six actions: boxing, clapping, 

waving, jogging, walking and running.  They are performed 
by 25 actors under four different scenarios. In total it con-
tains 598 video sequences.  All the following experiments 
are conducted on 1,000 midlevel features. 

As we discussed, the DMs provide a method to represent 
the data at different resolutions by using varied diffusion 
times. Generally, high data resolution can be obtained at 
smaller diffusion times. Therefore, the diffusion time t can 
affect the performance of the visual vocabulary. The three 
curves in Fig. 4 (a) illustrate the influence of t on the action 
recognition rates when the size of the semantic visual vo-
cabulary (Nv) is 100, 200 and 300 respectively (Here, the 
sigma value is 3 for all of them). It seems that higher rec-
ognition accuracy is obtained at a smaller t value when the 

Figure 4: (a) and (b) shows the influence of diffusion time and sigma value on the recognition performance respectively. Three curves 
correspond to three visual vocabularies of size 100, 200 and 300 respectively. The sigma value is 3 in (a) and the diffusion time is 5 in (b); (c) 
The comparison of recognition rate between midlevel and high level features. 

(c) (b) (a) 



 

 

sigma is fixed. In fact, when t is larger, the data resolution is 
lower, which may decrease the quality of the visual voca-
bulary. Additionally, the sigma value in Equation 1 also 
affects the recognition rate. Fig. 4 (b) shows its influence on 
the recognition performance when fixing the diffusion time 
t=5. The sigma value affects the recognition accuracy by 
influencing the decay speed of the eigenvalues of matrix 
P(t). In general, larger sigma values perform worse when 
diffusion time is fixed. In the following experiments, all the 
results are reported with the tuned (better) parameters.  

In order to verify that our learnt semantic visual voca-
bulary (high-level features) is more discriminative than the 
midlevel features, we compared the recognition rate ob-
tained by using high-level and midlevel features under the 
same size. The high-level features are learnt from the 1,000 
midlevel features using DM. The reported recognition rates 
are the best ones achieved with different diffusion times 
and sigma values. Fig.4 (c) shows the comparison. It is 
clear that high-level features can achieve much better per-
formance than midlevel features. Particularly, the recogni-
tion rate (88.9%) with 50 features is comparable to that of 
400 midlevel features. In addition, when the number of 
features is larger than 100, the recognition rate is over 90%, 
and the increase is slow with the growing number of fea-
tures. It means the recognition rate is not sensitive to the 
number of features, which is not the case with the midlevel 
features. This verified the aforementioned fact that the 
learnt high-level features are semantically meaningful. 
They can largely improve the recognition efficiency with-
out decreasing the performance for a large dataset.  

We believe the features lie on some manifolds, therefore 
we can apply the manifold learning technique to embed 
them into a low-dimensional space while maintaining the 
data structure. We conducted a group of experiments to 
compare some other manifold techniques (e.g. PCA, 
ISOMAP, Eigenmap) to DM. We have briefly discussed 
the difference between them in the introduction. All of 
them firstly embed the midlevel features into a 100- di-
mensional space, and then apply k-means to the midlevel 
features to obtain N clusters (high-level features). The 
results are shown in Fig. 5 (a) (All the techniques have been 
tuned to have better parameters). We can see DM can 
achieve improvements from about 2% to 5% in terms of 

recognition rate, as compared to others. Both DM and 
ISOMAP define an explicit metric in the embedding space 
(i.e. diffusion distance and geodesic distance respectively). 
The experiments further confirm that diffusion distance is 
more robust than geodesic distance.  

As described earlier, the semantic high-level features are 
learnt by applying k-means clustering on the embedded 
midlevel features. Another way to show the effectiveness 
of DM embedding is to compare the recognition rate of 
high-level features learnt by embedded midlevel features to 
that of original midlevel features without embedding 
(k-means is used as a clustering for both). The results are 
shown in table 1. The improvements are varied from 2.7% 
to 4.0%.  

Table 1 Performance comparisons between two vocabularies 
learnt from midlevel features with and without DM embedding. 

Vocabulary Size(Nv) 50 100 200 300 
Embedded features 88.8 92.3 91.3 91.3 
original features 84.8 88.3 88.6 88.3 

Information Bottleneck (IB) can also be used to learn a 
semantic visual vocabulary from the midlevel features 
[9,14]. Both IB and DM use mutual information for learn-
ing. The difference is that DM uses PMI while IB uses 
expectation of PMI. In addition, IB directly groups the 
midlevel features without embedding them into a low-
er-dimensional space. The performance comparisons be-
tween them are shown in Fig. 5 (b). Although the IB can 
achieve very comparable results to DM, the overall per-
formance is worse than DM. We can see DM can achieve 
more stable performance when the number of features 
increases, as compared to IB.  

Table 2 Performance comparison between two different midlevel 
feature representations: PMI vs. Frequency. 

Size(Nv) 50 100 150 200 250 
PMI 88.8 92.3 90.8 91.3 91.1 
Freq. 85.8 88.3 88.6 89.8 88.3 

We believe PMI can capture the relationship between a 
particular midlevel feature and videos as well as other 
midlevel features. This is further verified by the experi-
ments shown in Table 2. We conducted two groups of 

(a) 
Figure 5: (a) Comparison between different manifold learning schemes. (b) Comparison between DM and IB 
(Information Bottleneck). 

(b) 



 

 

experiments. Both of them use DM to embed features into a 
lower-dimensional space. The difference is that one of 
them uses PMI to represent the midlevel features and the 
other directly uses frequency to represent them.  

It is very interesting to check the confusion table when 
the best average accuracy is obtained, see Fig. 6 (a). “Jog-
ging” obtains a 90% recognition rate which is better than 
most exiting approaches [32]. However, running is easily 
misclassified as jogging.  The overall average accuracy of 
92.3% is much better than the average accuracy of 89.3% 
obtained by directly using the 1,000 midlevel features for 
classification.  It is also a little bit better than some existing 
BOF-based approaches [15,29].  

4.2. Experiments on YouTube dataset 
Since the KTH dataset is relatively simple, we collected 

a more complex and challenging dataset based on YouTube 
videos and our personal video collections. Since we do not 
have control over the video capturing process, the dataset 
has the following properties: 1) a mix of still and moving 
cameras, 2) cluttered background, 3) variation in object 
scale, 4) varied viewpoint, 5) varied illumination, and 6) 
low resolution. This action dataset contains 8 categories: 
volleyball spiking(v_spiking), trampoline jumping 
(t_jumping), soccer juggling (s_juggling), horse-
back-riding (h_riding), diving, swinging, golf-swinging 

(g_swinging), and tennis-swinging (t_swinging). Most of 
them share some common motions such as “jumping” and 
“swinging”. We organize the video sequences into 25 rela-
tively independent groups, where separate groups are either 
taken in different environments or by different photo-
graphers. The dataset contains 800 video sequences in total. 
Fig. 7 shows some examples of the YouTube dataset. 

We extracted from 200 to 400 cuboids from each video, 
and then used k-means to obtain 1,000 midlevel features.  
All the experiments were conducted on these features. Fig. 
6 (b) shows the performance comparison between DM and 
other manifold learning methods.  It shows DM gives more 
stable recognition rates than other approaches with varied 
sizes of the vocabulary. It obtained the best result of 76.1% 
accuracy, which is at least about 2.4% higher than the best 
results obtained by others. We show its details in the con-
fusion table in Fig. 6 (c) for the best results.  We can see 
that several actions are misclassified as “t_jumping” and 
“v_spiking”.  The reason may be that these two actions are 
not uniform and share many action units with other action 
categories. We also noticed the best result of 76.1% is 
competitive to the result of 75.1% obtained by directly 
using the 1,000 midlevel features for recognition. 

Fig. 8 shows the decay of the eigenvalues of P(t) when 

sigma value is 14. For diffusion time t=2, the top 70 ei-
genvectors are the most significant ones, and for t=4, the 
top 10 are the most significant ones. We noticed when t is 
larger, very few (i.e. 20) eigenvectors can achieve good 
performance. 

Figure 6: (a) Confusion table for KTH dataset when the size of semantic visual vocabulary is 100. The average accuracy is 92.3%.  
(b) Compassion between DM and other manifold learning schemes on YouTube action dataset. (c) Confusion table of YouTube 
dataset when the size of semantic visual vocabulary is 250. The average accuracy is 76.1%.   

(b) (c) (a) 

Figure 7: Examples of YouTube action dataset. 

P(1) 

P(2) 
P(4) 

Figure 8: The decay of the eigenvalues of P(t) on YouTube 
dataset when sigma is 14. 



 

 

4.3. Experiments on Fifteen scene dataset 
We further verified our framework on the fifteen scene 

dataset [20]. We learnt 2,000 midlevel features using 
k-means.  Table 3 lists all the best results we obtained using 
different manifold learning. DM can perform better than 
the other methods, but its advantage is less obvious for this 
dataset as comparing with the action dataset. 

Table 3 Best results (%) of different manifold learning techniques. 

 
DM ISOMAP PCA EigenMap 

Average Accuracy 74.9 73.5 73.3 73.1 

 
By using spatial information, Lazebnik’s best result was 
81.4% [20]. In fact, the results we achieved in this paper are 
only based on bag of features without any spatial or tem-
poral information. Due to different experiment setup, we 
cannot directly compare our results to theirs.    

5. Conclusion 
In this paper, we propose a novel approach for generic 

visual vocabulary learning. We first learnt the midlevel 
features (the initial visual vocabulary) using k-means, then 
use DM to embed the midlevel features into 
low-dimensional while maintaining the local relationships 
of the features. These embedded midlevel features are 
further clustered to reconstruct a semantically meaningful 
visual vocabulary. We tested our approach on three com-
plicated datasets. The results verify that the learnt semantic 
visual vocabularies obtained stable performance compared 
to the midlevel features learnt by k-means. In addition, we 
also compared DM with other manifold learning tech-
niques. In most cases, DM can perform better, especially 
for the action dataset. 
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