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ABSTRACT
Efficient video browsing requires indexing of videos so that
the users can quickly locate the segments of their inter-
ests. While browsing a video, the users often prefer to
skim through the video by scenes rather than frames or
shots. In general, a scene can be defined by the continu-
ity in the visual contents of shots due to fixed physical set-
ting or by the continuity of the ongoing actions. We exploit
this fact and propose a novel approach for clustering shots
into scenes by transforming this task into a graph partition-
ing problem. This is achieved by constructing a weighted
undirected graph called a shot similarity graph, SSG, where
each node represents a shot and the edges between the shots
are weighted by their similarities. Both color and motion
information are utilized to compute shot similarities. The
SSG is then split into smaller story units by applying the
normalized-cut technique for graph partitioning. The pro-
posed approach is robust and produces meaningful tempo-
ral segmentation of video, which is useful for applications
such as “video on demand”. Experiments are presented with
promising results on two Hollywood movies.
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1. INTRODUCTION
The ever growing amount of multimedia data increases the
need for developing new and efficient techniques of multime-
dia data storage and retrieval. The recent years have seen
increasing research interest in this field due to the boost
in the computation power and storage capabilities of com-
puters. Likewise, the exponential growth of video delivery
systems, such as video on demand via cable and the Inter-
net, further entails new designs of multimedia browsing and
retrieval systems - video in particular. For example, DVDs
currently are made with options to view a particular scene

in the movie by providing a “chapter selection” menu. To
obtain such a representation, a human observer is required
to sequentially watch the video and locate the scene bound-
aries. However, due to the huge number of produced videos
being generated every year, manual content analysis is im-
practical, as it is slow and expensive.

A shot is the basic unit of a video. Therefore, splitting the
complete visual track of a video into shots provides a pre-
sentation of the video one level higher than browsing a se-
quential tape. However, the number of shots may vary from
several hundred to thousands in a typical full length fea-
ture movie. Therefore, a meaningful segmentation requires
clustering the shots into scenes, as these scenes provide the
semantic meaning of the video. Yeung et al. [10] proposed
a graphical representation of videos by constructing a scene
transition graph, STG. Each node in an STG represented
a shot, and the edges represented the transitions between
the shots based on the visual similarity and temporal local-
ity. The STG was then split into several subgraphs using
the complete-link method of hierarchical clustering. Each
subgraph satisfied a similarity constraint based on the color
and represented a scene. Hanjalic et al. [4] used a similar
approach for shot clustering using a graph and found logi-
cal story units. The linking of shots was done by defining
an inter-shot dissimilarity measure among the shots. Their
method used MPEG compressed video sequences and uti-
lized DCT images. The number of key frames for each shot
varied with the dynamics of that shot. Each shot was rep-
resented by combining all key frames within the shot. An
average distance between the shots was computed in the
L*u*v* color space. This determined whether or not two
shots were part of one logical story unit. If two shots were
found to be similar, all the shots in between them were also
merged to construct one logical story unit. Rui et al. [6]
proposed the construction of table-of-contents for videos. A
time-adaptive grouping of shots was done by finding the vi-
sual similarities between them. This similarity was a func-
tion of color and activity features of the shots, weighted by
their temporal locality. Shots were merged together to form
groups by defining a group threshold and groups were merged
together to form scenes by defining a scene threshold. They
also suggested a method to determine these thresholds au-
tomatically. Recently, Zhou et al. [11] exploited film editing
techniques and discovered that certain regions in the video
frame are more robust to noise for computing shot similari-
ties. The clustering method is, however, similar to [4]. The



improvement made in their work was the use of different
frame regions for establishing links between the shots.

The decision of whether a scene boundary exists in the afore-
mentioned graph-based methods is often based on the sim-
ilarity between two arbitrary shots, thresholded by an em-
pirical value. However, it may happen by chance that in
any typical feature movie, two different scenes will have a
pair of visually similar shots. If the decision about the scene
boundary is made on an individual basis, they will both be
considered as parts of one scene. All shots between them
will also be erroneously merged together to form one scene.
This is shown in Fig. 1. Consider two scenes, 1 and 2. Scene
1 consists of shots A and B, and scene 2 consists of shots C,
D and A′. If shot A happens to be similar to any shot in
scene 2, such as A′, an erroneous link will be formed between
scene 1 and 2 (indicated by a dotted link). This will result
in the undersegmentation of the video, i.e., the number of
resulting scenes will be less than expected. We believe that
the detection of scenes should not be based on one-on-one
shot similarity. Instead, all the shots should be considered
in order to maximize the intra-scene similarity between the
shots of one scene and to minimize the inter-scene similarity
between the shots of two different scenes.

Adams et al. [1] also parsed videos by computing the tempo
in feature movies. Their approach was inspired by the exist-
ing cinematic conventions known as film grammar. Camera
motion parameters and the shot lengths in the video were
used to construct a tempo plot. The proposed method de-
tected edges in the tempo function and identified instances
where the tempo of the movie changed with time. This
information was further used as a cue for detecting story
sections and events. However, their method did not detect
logical boundaries between the scenes in which the tempo
was consistent. We believe that the visual similarities of
shots can also be combined with the motion and shot length
features to improve the temporal segmentation of videos.

A B A B C D C A’ D C

Scene 1 Scene 2

Figure 1: Erroneous shot linking indicated by the
dotted link. A valid scene boundary will be missed
resulting in the undersegmentation of videos.

2. OUR APPROACH
A scene can be defined as a subdivision of a movie in which
the physical setting is fixed. It may also be defined by the
continuity of the action even when the physical setting is
not consistent. In scenes with fixed physical setting, several
cameras capture video from different viewing angles where
the background remains the same. For example, a scene
shot inside a studio with multiple cameras. As the cameras
switch back and forth, they repeatedly show similar views
of the actors and the background. Therefore, the visual
contents of the shots are highly correlated. However, phys-
ical setting may not be fixed for certain scenes. For exam-

ple, an outdoor travelling scene is generally shot by cameras
mounted on a truck or a trolley. In this case, a scene may
be defined by the continuity of ongoing action performed
by the actor(s). Taking these factors into account, we have
developed a framework to find scene boundaries which ex-
ploits both the color and motion similarities of shots. In our
approach, we construct a weighted undirected graph called
a shot similarity graph, SSG, and transform the problem of
scene boundary detection into a graph partitioning prob-
lem. The undirected graph G = (V, E) consists of N nodes
such that each node represents a shot and edges connect
the nodes. A weight W (i, j), which is proportional to the
shot similarities, is associated with every edge connecting
nodes i and j. Sec. 2.3 discusses the computation of shot
similarities as a function of shot color and motion contents.
Finally, the scene boundaries are detected by partitioning
the SSG into subgraphs that maximize the intra-subgraph
similarities and minimize the inter-subgraph similarities. It
should be noted that our algorithm considers the global sim-
ilarities of shots to detect boundaries. Therefore, it is not
affected by any local mismatch between two shots that be-
long to two different scenes as outlined earlier in Sec. 1. The
detection of scenes is explained in Sec. 2.5. We present our
experiments in Sec. 3 and Sec. 4 concludes our work.

2.1 Shot Detection and Key Frame Selection
The video is first divided into shots. Much work has been
reported in this area and highly accurate results have been
obtained. We use a modified version of the color histogram
intersection method of shot detection, which was proposed
by Haering [3]. For each frame, a 16-bin HSV normalized
color histogram is estimated with 8 bins for hue and 4 bins
each for saturation and value. Shots that are shorter than
10 frames are merged with the following shots as being erro-
neous. Each shot is represented by one or more key frames
depending upon the shot activity. We use the method pro-
posed by Rasheed and Shah [5] that selects a variable num-
ber of frames to represent the shot contents. Thus a shot
z is a set of frames Sz = {fa, fa+1, ..., f b} where a and b
are the indices of the first and the last frames of the shot,
and is also represented by a set of key frames Kz. Note that
the index of the middle frame of the shot is expressed as
mz = ba+b

2
c.

2.2 Shot Motion Content Feature
We associate a feature, Motz with each shot z, which is
the motion content of the shot normalized by the number of
frames in it, that is:

Motz =
1

b− a

b−1∑

f=a

(1− ColSim(f, f + 1)) , (1)

where ColSim is defined as the color similarity between two
image frames, that is:

ColSim(x, y) =
∑

k∈bins

min(Hx(k), Hy(k)), (2)

where Hx and Hy are the HSV color histogram of frames x



and y respectively. Due to the temporally changing visual
content in an action scene, we have observed that the mo-
tion content value of the shots from an action scene is much
higher than for the shots from a dialogue scene. Therefore,
it can be used as a suitable feature for shot similarity esti-
mation as explained in the next section.

2.3 Finding Color and Motion Similarities Be-
tween the Shots

As explained in Sec. 2, shots that belong to one scene often
have similar visual (color) and/or action (motion) contents.
Generally, dialogue shots span a large number of frames and
are often filmed with fixed physical setting. Due to the
repetitive transitions between the fixed camera views, the
shots in this scene category have higher visual correlation.
On the other hand, shots of fight and chase scenes change
rapidly and last for few frames (Arijon [2]). In a similar fash-
ion, the motion content of shots also depends on the nature
of the scene. The dialogue shots are relatively calm (nei-
ther actors nor the camera exhibit large motion). Although
camera pans, tilts and zooms are common in dialogue shots,
they are generally smooth. In fight and chase shots, the
camera motion is jerky and haphazard with larger move-
ments of actors. For a given scene, these two attributes are
kept consistent over time to maintain the pace of the movie.
Thus, we compute the similarities between shots as a func-
tion of their visual and motion content features. That is,
the similarity between shot i and j will be:

ShotSim(i, j) = V isSim(i, j) + MotSim(i, j). (3)

The V isSim between shots i and j is now defined as follows:

V isSim(i, j) = max
p∈Ki,q∈Kj

(ColSim(p, q)) , (4)

where p and q are the key frames of shot i and j respectively.
Thus the V isSim for any arbitrary pair of shot is the max-
imum ColSim of all possible pairs of their key frames.

It is more likely that the consecutive shots of a particu-
lar scene will have similar motion contents (consider an ac-
tion scene for example). We compute the motion similarity,
MotSim, between two shots as follows:

MotSim(i, j) =
2×min(Moti, Motj)

Moti + Motj
. (5)

Thus, if two shots have similar motion content, their MotSim
will have a higher value. Note that both V isSim and MotSim
are in the range 0-1.

2.4 Constructing the Shot Similarity Graph,
SSG

Given N shots, we construct a weighted undirected graph
called a shot similarity graph, G = (V, E), such that each
shot i is represented by a node, vi, where i is the shot index.
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Figure 2: Computation of w(i, j), which is an expo-
nentially decreasing function of temporal distance
between two arbitrary shots, i and j. Note that
with a greater d, the weight decreases with a slower
rate.

Also, an edge is present between every pair of nodes. Let
e(i, j) ∈ E be the edge between the nodes i and j with an
associated weight W (i, j) which reflects the likelihood that
two shots belong to one scene. It is less likely that two shots
farther apart in time will belong to one scene. That is, the
higher the temporal distance between them, the lower the
probability that the shots constitute one scene. Therefore,
the weight W (i, j) is proportional to the ShotSim(i, j) and
temporal proximity of the shots. This is formulated as:

W (i, j) = w(i, j)× ShotSim(i, j), (6)

where w(i, j) is a decreasing function of the temporal dis-
tance between the shots. Rui et al. used a linearly de-
creasing function of the temporal distance to compute the
temporal attraction between frames [6]. However, we found
that an exponentially decreasing function performs better.
Thus the weight w(i, j) decays with the distance between
the middle frames of the shots under consideration, that is:

w(i, j) = e−
1
d
·|mi−mj

σ
|2 , (7)

where σ is the standard deviation of the shot durations in
the entire video. The rate of decay is controlled by a factor d.
We set d = 20 in our experiments, which was kept constant
throughout the experiments. Fig. 2 shows the plot of w
against the temporal distance between shots.

Fig. 3 shows the shot similarity graph constructed for 36
minutes of the movie “A Beautiful Mind”. There are 219
shots in the video. The similarities between the nodes are
represented by pixel intensities such that lower intensity
means higher similarity. A human observer identified the
scene boundaries present in the video which are indicated
by lines on the bottom-right side of the image. Note that
the shots that belong to a particular scene form distinct
clusters as seen in the zoomed-in section of the SSG.
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Figure 3: A shot similarity graph for 36 minutes of the
movie “A Beautiful Mind”. Darker pixels represent
higher similarities. The ground truth scene bound-
aries are indicated with lines. Note that shots that
belong to a particular scene form distinct clusters
as seen in the zoomed-in section of the SSG.

2.5 Scene Detection Using Graph Cut
Graph partitioning techniques are known for effective per-
ceptual grouping. Several algorithms have been proposed for
segmenting images based on pixel proximity and color inten-
sity similarity, for example, [8], [9] and [7]. Generally, the
partitioning solution is achieved by recursive bipartitioning,
that is, at each step the graph is divided into two parts based
on a partitioning measure. We employ the graph partition-
ing technique proposed by Shi and Malik [8] called normal-
ized cuts. Starting with an initial SSG, G = (V, E), we seek
a partitioning into two disjoint subgraphs, G′ = (V ′, E′) and
G′′ = (V ′′, E′′) such that V ′ ∪ V ′′ = V and V ′ ∩ V ′′ = ∅.
Such a partition is achieved by removing the edges connect-
ing subgraphs G′ and G′′. In particular, there exist an ex-
ponential number of such partitions. However, for videos,
we seek a partition such that all shots that belong to a par-
ticular subgraph are time continuous. That is, the following
condition holds:

(i < j or i > j) and i 6= j for all vi ∈ V ′, vj ∈ V ′′.

Thus, the complexity of partitioning an SSG into two sub-
graphs is of order N which is the number of shots present
in the segment of the video. In graph theory literature,
the summation of weights associated with the edges being
removed is called a cut and it reflects the degree of dissimi-
larity between the two parts, that is:

cut(V ′, V ′′) =
∑

i∈V ′,j∈V ′′
W (i, j). (8)

The normalized cut value for such a partitioning is expressed

Table 1: Summary of Data Set and Experimental
Results.

Movie A Beautiful Mind Terminator-II

Duration 36 min 55 min
#Frames 65122 98505
#Shots 219 994

G. Truth Scenes 18 36
Detected Scenes 28 70
Correct Scene 15 32
False negative 3 4
False Positive 13 38

Recall 0.833 0.889
Precision 0.536 0.457

as:

Ncut(V ′, V ′′) =
cut(V ′, V ′′)
assoc(V ′, V )

+
cut(V ′, V ′′)

assoc(V ′′, V )
, (9)

where assoc(X, V ) is the summation of weights associated
with the edges connecting all nodes in X to all nodes in V ,
that is:

assoc(X, V ) =
∑

c∈X,d∈V

W (c, d). (10)

We apply a recursive algorithm of graph partitioning such
that the intra-subgraph similarities are maximized and the
inter-subgraph similarities are minimized; that is, the shots
in each subgraph will have higher visual (color) and activity
(motion) similarities. This approach results in the clustering
of shots that are more likely to be in one scene. It should
be noted that there are no specific thresholds that control
the segmentation which is the basis of several graph-based
video segmentation approaches. Hence, our method does
not suffer in accuracy due to any mismatch between the
shots of different scenes and therefore it is more robust to
noise. Fig. 4 shows the scene detection for the movie “A
Beautiful Mind”. The detected scene boundaries are iden-
tified with lines on the upper left side of the image. Please
refer to Sec. 3, which discusses the experiments on video
segments taken from both action and non-action Hollywood
movies. Experiments show that our method produces re-
sults with high recall/precision values when applied to two
very different genres of feature movies.

3. EXPERIMENTS
To evaluate the performance of proposed algorithm, we per-
formed experiments on two sets of videos each digitized at
29.97 frames per second. The first video segment was 36
minutes long, taken from a slow paced movie, “A Beauti-
ful Mind”. The second video segment was taken from the
movie “Terminator II”, an action movie which is very differ-
ent from the first one and consists of several action scenes.
The purpose of experimenting with two different genres of
movies was to demonstrate the robustness of the algorithm
regardless of the movie genre. A human observer identi-
fied the scene boundaries in both videos which were used as
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Figure 4: Scene detection for 36 minutes of the
movie “A Beautiful Mind”. Detected scene bound-
aries are indicated with lines in the upper left side
of the graph. Out of 18 scene boundaries, 15 scene
boundaries are identified correctly.
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Figure 5: Ground truth scenes vs. detected scenes.
The upper row represents the scenes identified by a
human observer. Consecutive scenes are shown with
alternating black and white patterns. The bottom
row shows the scenes detected by our algorithm for
the movie “A Beautiful Mind”.
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Figure 6: Ground truth scenes vs. detected scenes.
The upper row represents the scenes obtained from
the movie’s DVD chapter selection menu. Consec-
utive scenes are shown with alternating black and
white patterns. The bottom row shows the scenes
detected by our algorithm for the movie “Termina-
tor II”.

Table 2: Scene Boundary Detection for the movie
“A Beautiful Mind”. Correctly identified scenes are
marked as

√
. ’*’ represents the scenes identified

by the human observer and did not appear in the
movie’s DVD chapter selection menu.

No. DVD Chap./Human Observer* Scene
Detected?

1 Mathematicians
√

2 Reflections *
√

3 Princeton Dorm *
√

4 Drinking *
√

5 A Challenge
√

6 The Need to Focus
√

7 The Bar * ×
8 Princeton *

√
9 Dorm Room *

√
10 Governing Dynamics

√
11 Research * ×
12 With the Principle *

√
13 Celebrations *

√
14 The Pentagon

√
15 Wheelers Defense Labs * ×
16 Teacher and Students

√
17 Code Breaker

√
18 Laboratory *

√

the ground truth. We have also incorporated DVD chap-
ter information in ground truth construction. We found
that in the movie “Terminator-II”, the chapters coincided
with the human observer’s suggested scene boundaries (see
Tab. 3). For the movie “A Beautiful Mind”, we found that
the DVD chapters were a superset of what the human ob-
server had suggested. These scenes are identified by a ‘*’ in
Tab. 2. The boundaries detected by the proposed method
were compared against the ground truth. A 30-second slid-
ing window was swept over the detected boundaries as the
tolerance factor. The overall results are presented in Tab.
1. There are two issues involved in evaluating any segmen-
tation algorithm; oversegmentation and undersegmentation.
We believe that a slight oversegmentation is preferable to
undersegmentation, since split scenes can be combined by
further analysis. That is, a higher recall value is preferred.
Fig. 5 and 6 show the scene detection results. The ground
truth scenes are indicated by alternating black/white pat-
terns w.r.t. the shot numbers in the upper row. The bottom
row shows the detected scenes. We have observed that the
algorithm works better for slow paced scenes, such as dia-
logue scenes, than for fast paced scenes. This is due to the
fact that slow paced scenes are often well structured. Ac-
tion scenes, on the other hand, are poorly structured and
appears as multiple clusters in the graph. We believe that
the use of audio information as a similarity measure can be
incorporated to improve the segmentation task.

4. CONCLUSION
We presented a method of high level segmentation of video
into scenes. We exploited the fact that shots that belong to
one particular scene often have similar visual (color) and ac-
tion (motion) attributes and transformed the scene segmen-



Table 3: Scene Boundary Detection for the movie
“Terminator-II”. Correctly identified scenes are
marked as

√
.

No. DVD Chapter Scene
Detected?

1 Meet John Conner
√

2 Sarah Connor
√

3 T-1000 Visits The Voights
√

4 Easy Money
√

5 Sanity Review ×
6 Cyberdyne Systems

√
7 Model Citizen

√
8 Target Acquired

√
9 The Galleria

√
10 Zeroed In The Corridor

√
11 Into The Streets

√
12 Canal Chase

√
13 Time Out

√
14 Never This Nice

√
15 Photos

√
16 Mission Parameter

√
17 Pescadero State Hospital

√
18 Lewis The Guard

√
19 Sarah Breaks Out ×
20 215 Bones

√
21 I Swear

√
22 Syringe Point

√
23 Come With Me If You Want To Live

√
24 Escape From Pescadero

√
25 Security Car

√
26 Nice Bike

√
27 Night Repairs ×
28 Head South

√
29 No Problemo ×
30 Detailed Files

√
31 Scalcedas Camp

√
32 Weapons Cache

√
33 Fathers And Sons

√
34 Nuclear Nightmare

√
35 Sarahs Decision

√
36 No Fate

√

tation task into a graph partitioning problem. The proposed
method is superior to other graph-based approaches in that
it considers all the shots to cluster shots into scenes and
captures the global similarities of shots rather than the lo-
cal similarities. It produces semantically meaningful scenes
and it is robust to noise.
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