

FINAL ORAL EXAMINATION

OF

ENRIQUE GABRIEL ORTIZ B.S., UNIVERSITY OF CENTRAL FLORIDA, 2007 M.S., UNIVERSITY OF CENTRAL FLORIDA, 2009

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(COMPUTER ENGINEERING)

Tuesday, March 11, 2014, 9:00 A.M. CREOL, Room 102

DISSERTATION COMMITTEE

Professor Mubarak Shah, *Chairman* Professor Rahul Sukthankar Professor Niels da Vitoria Lobo Professor Xin Li Professor Jun Wang

OUTLINE OF GRADUATE STUDIES

Major:	Computer Engineering	
Courses:	Computer Vision	Tappen
	Advanced Computer Vision	Shah
	Computer Vision Systems	Shah
	3D Computer Vision	Foroosh
	Image Processing	Foroosh
	Mathematical Methods on Image Analysis	Li

SELECTED PUBLICATIONS, TALKS AND PATENTS

Open-Universe Face Recognition in Movie Trailers via Sparse Representation and Affinity-based Propagation, E.G. Ortiz and M. Shah, *International Journal of Computer Vision (IJCV)*, 2014. (Under Review)

Who Do I Look Like? Determining Parent-Offspring Resemblance via Genetic Features, A. Dehghan, E.G. Ortiz, R. Villegas, and M. Shah, *IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, 2014.

Face Recognition for Web-Scale Datasets, E.G. Ortiz and B.C. Becker, *ELSEVIER Computer Vision and Image Understanding (CVIU)*, 2014.

Face Recognition in Movie Trailers via Mean Sequence Sparse Representation-based Classification, E.G. Ortiz, A. Wright, and M. Shah, *IEEE International Conference on Computer Vision and Pattern Recognition* (*CVPR*), 2013.

Video Action Recognition with a Handful of Labeled Examples, E.G. Ortiz, R. Sukthankar, and M. Shah, *AAAI Symposium on Weakly Supervised Learning from Multimedia*, 2013.

Evaluation of Face Recognition Techniques for Application to Facebook, B.C. Becker and E.G. Ortiz, *IEEE Conference on Automatic Face and Gesture Recognition (FG)*, 2008. (Oral)

Video Face Recognition, E.G. Ortiz, A. Wright, and M. Shah, US Patent 61/857,957 (Pending).

DISSERTATION

TAMING WILD FACES: WEB-SCALE, OPEN-UNIVERSE FACE IDENTIFICATION IN STILL AND VIDEO IMAGERY

With the increasing pervasiveness of digital cameras, the Internet, and social networking, there is a growing need to catalog and analyze large collections of photos and videos. In this dissertation, we explore unconstrained still-image and video-based face recognition in real-world scenarios, e.g. social photo sharing and movie trailers, where people of interest are recognized and all others are ignored. In such a scenario, we must obtain high precision in recognizing the known identities, while accurately rejecting those of no interest.

Recent advancements in face recognition research has seen Sparse Representation-based Classification (SRC) advance to the forefront of competing methods. However, its drawbacks, slow speed and sensitivity to variations in pose, illumination, and occlusion, have hindered its wide-spread applicability. The contributions of this dissertation are three-fold:

- 1. For still-image data, we propose a novel Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear regression to perform sample selection for l₁-minimization, thus harnessing the speed of least-squares and the robustness of SRC. On our large dataset collected from Facebook, LASRC performs equally to standard SRC with a speedup of 100-250x.
- 2. For video, applying the popular l₁-minimization for face recognition on a frame-by-frame basis is prohibitively expensive computationally, so we propose a new algorithm Mean Sequence SRC (MSSRC) that performs video face recognition using a joint optimization leveraging all of the available video data and employing the knowledge that the face track frames belong to the same individual. Employing MSSRC results in a speedup of 5x on average over SRC on a frame-by-frame basis.
- 3. Finally, we make the observation that MSSRC sometimes assigns inconsistent identities to the same individual in a scene that could be corrected based on their visual similarity. Therefore, we construct a probabilistic affinity graph combining appearance and co-occurrence similarities to model the relationship between face tracks in a video. Using this relationship graph, we employ random walk analysis to propagate strong class predictions among similar face tracks, while dampening weak predictions. Our method results in a performance gain of 15.8% in average precision over using MSSRC alone.

ENRIQUE GABRIEL ORTIZ

1984	Born in Baton Rouge, LA	
2003-07	B.S., University of Central Florida, Orlando, FL	
2005-06	Robotics Programmer, University of Central Florida, Orlan-	
	do, FL	
2006-07	Undergraduate Research Assistant, Machine Learning Lab,	
	University of Central Florida, Orlando, FL	
2006	Undergraduate Research Assistant, Automation Sciences	
	Lab, University of California-Berkeley, Berkeley, CA	
2007-09	M.S., University of Central Florida, Orlando, FL	
2007-14	Ph.D., University of Central Florida, Orlando, FL	
2014	Computer Vision Scientist, Sighthound, Orlando, FL	

SELECTED HONORS

2007-10	NSF Graduate Research Fellowship	\$171,000
2007-14	FEF McKnight Doctoral Fellowship	\$68,000